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1.1. INTRODUCTION

Nowadays the building of structures, machines and other engineering
structures is impossible without projects previously drawn. The project
consists of the drawings and explanation notes presenting the dimensions
of the construction elements, the materials necessary for their building and
the technology for their building. The dimensions of the elements and
details depend on the characteristics of the used materials and the external
forces acting upon the structures and they have to be determined carefully
during the design procedure.

The structure must be reliable as well as economical during the
exploitation process. The reliability is guaranteed when the definite
strength, stiffness, stability and durability are taken in mind in the
structure. The economy of the construction depends on the material’s
expenditure, on the new technology introduction and on the cheaper
materials application. It is obvious that the reliability and the economy are
opposite requirements. Because of that, the Strength of Materials relies on
the experience as well as the theory and is a science in development.

* Basic concepts

Strength is the ability of the structure to resist the influence of the external
forces acting upon it.

Stiffness is the ability of the structure to resist the strains caused by the
external forces acting upon it.

Stability is the property of the structure to keep its initial position of
equilibrium.

Durability is the property of the structure to save its strength, stiffness and
stability during the exploitation time.

Strength of Materials widely relies on the Theoretical Mechanics,
Mathematics and Physics. Besides, it is the basis of the other subjects in
the engineering practice.

1.2. BASIC PROBLEM OF THE STRENGTH OF MATERIALS

The basic problem of the science is development of engineering methods to
design the structure elements applying the restraining conditions about the
strength, stiffness and stability of the structure when the definite durability
as well as economy is given.

1.3.REAL OBJECT AND CORRESPONDING COMPUTATIONAL

SCHEME _ _
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To examine the real object a correct corresponding computational scheme
must be chosen. The computational scheme is a real body for which the
unessential attributes are eliminated. To choose the correct computational
scheme the main hypotheses of Strength of materials have to be
introduced.

1.4. MAIN HYPOTHESES

A. Hypotheses about the material building the body

- Hypothesis of the material continuity

The material is uniformly distributed in a whole body volume.

- Hypothesis of the material homogeneity

All points of the body have the same material properties.

- Hypothesis of the material isotropy The material properties are the
same in each direction of a body.

- Hypothesis of the deformability of the body

Contrary to the Theoretical Mechanics studying the rigid bodies, Strength
of Materials studies the bodies possessing the ability to deform, i.e. the
ability to change its initial shape and dimensions under the action of
external forces.

The deformations at each point are assumed to be small relative to the
dimensions of construction. Then, their influence onto the mutual positions
of the loads can be neglected (the calculations will be made about the
undeformed construction).

- Hypothesis of the elasticity Elasticity is the ability of the body to restore
its initial shape and dimensions when the acting forces have been removed.
B. Hypotheses about the shape of the body

- The basic problem of Strength of Materials is referred to the case of the
beam type bodies. The beam is a body which length is significant bigger
than the cross-sectional dimensions.

- Hypothesis of the planar cross-sections (Bernoulli’s hypothesis) Each
planar cross-section normal to the axis of the beam before the deformation
remains planar and normal to the same axis after deformation.
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C. Hypotheses about the applied forces
- The distributed upon a small area loads are assumed to be concentrated.

F
Y

Y Y

- Principle of Saint-Venant

If we replace a set of forces acting upon an area [, of the deformable

body with other set of forces equivalent to the first one, but acting upon
the area [, of the same body, the replacing will influence on the stresses

and deformations in the area [ 1, containing [1; and [, , where the

influence’s magnitude will correspond to the size of the bigger area
between []; and [, .

- Hypothesis of the local equilibrium If the body is in equilibrium, then,
each part of the body is also in equilibrium.

- Hypotbhesis of the statical action of the forces

The magnitude of the applied external forces increases gradually from zero
to the final value.

- Hypothesis of the initial and final position of equilibrium

Let the initial position of the beam to be the position of equilibrium. If the
applied external forces cause the small deformations according to the
hypothesis studied earlier, the final position of the beam is also position of
equilibrium. Then, investigating the beam, the assumption that the initial
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position of equilibrium coincides with the final one is made.

- Principle of superposition

The final magnitude of a quantity considered (stress, strain, displacement,
rotation) caused by the set of external forces can be obtained as an
algebraic sum of the quantity magnitudes caused by the particular forces
composing the set.
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- Principle of hardening

A body has a definite shape and dimensions before loading.

The same body has the definite shape and dimensions after loading, again,
but they are different than the first ones.

Rigid body — a body consisting of particles the distances between which
do not change

Deformable body — a body consisting of particles the distances between
which change. A deformable body is a rigid one only to the definite
loading.

CHAPTER 2
INTERNAL FORCES
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2.1. DEFINITION OF INTERNAL FORCES. METHOD OF
SECTION.

A beam in equilibrium under the action of a set of forces is considered.
This set of forces causes the deformation of the beam where the distances
between the beam points change. Then, the forces of interaction between
the points also change. The additional forces of interaction arising in the
body are named internal forces. They have to be studied because they are
related to the resistance of the body against the applied loads, and,
consequently, to the strength of the body. The internal forces are the
measure of interaction between two body parts situated on the two sides of
the same section.

Fig. 2.1: A beam acted upon by a set of external forces

The internal forces can be determined by the method of section, as follow:
Let the beam in fig.2.1 to be in equilibrium under the action of a set of
forces

F,, F,,...F, named external forces. They include the external loads as well
as the support reactions previously obtained. A plane normal to the
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longitudinal axis of the beam divides the body into two parts. A border
section between these two parts is called the cross-section.

Further, one of the parts is removed (usually this one upon which the
bigger number of loads acts) while the other will be investigated.

?1 ﬂ

F/ Fig. 2.2: The left beam part

The hypothesis of the local equilibrium has the essential role in Strength
of materials and according to it, if a body is in equilibrium, then each part
of the body is in equilibrium, too. This hypothesis leads to the conclusion
that the left part of the beam must be in equilibrium under the action of a
set of forces applied on it. However, the external forces are not in
equilibrium themselves. To be the left beam part in equilibrium, the new
type of forces must be introduced. These additional forces are the internal
forces in the beam and they give the influence of the right beam part on the
left one.

If the right beam part is chosen for investigation, then the internal forces
giving the influence of the left beam part on the right one have to be put.
According to the Newton’s third law, the internal forces acting upon the

left beam part and these ones acting upon the right beam part must have

the same magnitudes, same directions and opposite senses.

The internal forces points of application in the plane of the cross-section
are infinite as number and, because of that, they can not be found strictly.

Then, to determine their magnitudes, the theorem of Poinsot! known by
Theoretical mechanics will be used, as follow: reduction of the set of
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internal

forces will be made about the cross-section’s center of gravity where the
main vector R and the main moment M will be obtained.

In a spatial case of loading when the left beam part is considered, the
origin of the coordinate system is the center of gravity of the cross-section.
The axis x is normal to the cross-sectional plane and its positive sense is
out of the section. The axes y and z belong to the cross-sectional plane
where the -axis has the downward direction while the -axis has the sense
so that the three axes form the right-handed Cartesian coordinate system.

Fi™\

3

/4 5

P! Fig. 2.3:
Internal forces — spatial case

Vectors R and M are represented by its projections onto the axes of the
right-handed Cartesian coordinate system. If the beam part considered is
the left one, then the senses of the internal forces always coincide with the
senses of the axes.

If the right beam part is chosen, then the -axis of the right-handed
coordinate system points toward the section. Besides, all of the internal
forces must be introduced with senses opposite to the senses of the axes.

The internal forces in the spatial case of loading are six and they are
labeled in the following manner:
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N - axial (normal) force;
V, - shearing force onto -axis;

V, - shearing force onto -axis;

T - torsion moment;
M, - bending moment about - axis;

M, - bending moment about - axis.

If the external forces acting upon the beam are situated in the plane
containing the beam axis, then the loading case named planar is simpler:
only the axes x and z have to be introduced in the cross-section’s center of
gravity. Now, the internal forces are three:

N - axial (normal) force;V - shearing force;M - bending moment.

1 Louis Poinsot (1777-1859) is a French mathematician.

The internal forces must be introduced always with their positive senses,
which for the left and right beam part are given in fig.2.4:

Left beam part Right beam part
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Fig. 2.4: Positive senses of internal forces — plane case
The axial force N is supposed to be positive when its sense is out of the
section.

The shearing force V' is supposed to be positive when its sense coincides
with the sense of the positive axial force rotated at an angle of 90" in
clockwise direction.

The bending moment is supposed to be positive when the curved arrow
represented the moment begins from the downer beam end and finishes in
the upper one without crossing the beam.

It is important to note, that the concept of internal forces always relates to
the definite beam section.

2.2. INTERNAL FORCES FUNCTIONS AND DIAGRAMS

The conditions of equilibrium are written about the beam part considered.
These equations are:

- In a spatial case

1) UF;, Uo; 2) UF;, 1 0; 3) UF;, LI0; (2.1)

iii

4) UM;, 110; 5) UM, U 0; 6) LIM;, L10; (2.2)

iii

- In a plane case

1) UF,;, Uo; 2) UF;, 10; 3) LIM; ¢ LJ0. (2.3)

iii

It is obvious, that each internal force can be determined by one equation.
However, in a real problem, it is not enough to find the magnitude of the
internal forces in the definite beam section. It is necessary to obtain the
change of the internal forces in the whole beam. To perform that, the beam
must be separated into the segments.

The boundary point (section) of the segment is a beam point at which the
concentrated force or moment is applied. If the distributed load acts upon a
beam, then, both the beginning and the end of the load are the boundary
points. Besides, the points at which the change of distributed load intensity
exists are also boundary points. Finally, if the beam axis bends, then the
bending point is a boundary point.

After that, an arbitrary chosen beam section of distance x for each
segment must be considered. The distance x can be measured from the
beginning of the beam, but in the most of the cases x is measured from the
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left or the right end of the segment. Further, the imaginary cut through the
section chosen has to be made to divide the beam into two parts. Then, the
one beam part has to be investigated and the equilibrium conditions must
be written. In this manner, the internal forces will be obtained as functions
of x.

The graphs of these functions are named the internal forces diagrams. To
build the diagrams, first the zero line representing the beam axis must be
drawn in scale. The typical values of every function have to be drawn
perpendicular to the zero line in a definite scale and the typical points have
to be obtained. Finally, the points must be connected consequently.

The rules about the diagrams building are:

- In a plane case of loading of a straight beam — a broken line must be
drawn under the beam axis. The positive values of the bending moment M
must be put on the side of the broken line while the positive values of the
axial force N and the shearing force V have to be put

on the opposite to the broken line beam side;

- In a plane case of loading of a bent beam — The rule mentioned above is
applied for each

segment, but for a vertical or inclined segments the broken line represents
a relatively

named downer beam part;

- In a spatial case of loading of a beam — The values of N, V,, Tand M,

must be drawn

parallel to -axis. The positive values of N,V, and T must correspond to the
negative sense of -axis while the positive values of M, coincides with the
positive sense of z . The values of V, and M, must be drawn parallel to -

axis where the positive values must be drawn on the side with negative
sense of y .

The internal forces diagrams give the possibility to determine visually the
beam section at which the biggest internal force exists (the failure of the
construction starts at this beam section). Because of that, the internal
forces diagrams predetermine the definite conditions of the construction
strength, stiffness and reliability.

Problem 2.1. Build the internal forces diagrams of the planar straight
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beam given. The support reactions are obtained by the R

q
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m

equations:
100 kNmM, = 50

c D OF, 0o0; Ay 0 0; OF, 0 0; A

ii

R ,[J 20.3-60kN;
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N[J110.40010007 0;

MA U150 kNm.+ y; [(IMp [ 0; -M4 -6Ay ]
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5
m
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50 + +7370 -370 (0.

112 ,5 110100100 : :
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A beam given has three segments: AB ,BC and CDand the internal forces
functions are determined, as follow:

segment AB: 0 L1 x [ 3m
20

20

X

LIF,, 1JO; N TJO;

1

5o My UF;, [J0; 50-20x-V L] 0; V [J-20x [L150; i

vU OJU50kN; v LJLJ-50kN;

XV OMgecrion [10; M 00 20x.X -50x -50 (10550 4/ 4 9

M [1-10x2 [150x [150; M1 11-50kN;
0 O

VvV [-20x150 [J0; x[12,5m; M [L1112,5kNm.
segment BC : 0 L] x L11m

Vep UF;, U0; N L0;y;

[IF;, 1J0; V-10 1JO;V LJ-10kN;p « 10 2 100 i
S M, ociion 10; -M [110x (1100 CJ0;

M [J10x [1100; ML LJ100kNm;M L1 L1 [1110kNm.

segment CD: 0 L1 x [12m

LF,;, UJo; N U 0; UJF,;, LJO; VI 0;
N

\%

D

11

LM,

section

M % 100

[10; -M (1100 [10; M [

To build the internal forces diagrams, the principle of superposition can be
used, too. In accordance to the principle the final magnitude of a quantity
considered (support reaction, internal force) caused by the set of forces can
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be obtained as an algebraic sum of the quantity magnitudes caused by the
particular forces composing the set.

Problem 2.2 Apply the principle of superposition to build the bending
moment diagram of the beam given.

The load applied on the beam consists of a concentrated force and a
concentrated moment. First, the bending moment diagram under the action
of a force will be built; then, the bending moment diagram under the action
of a moment will be built. Finally, to obtain the entire bending moment
diagram the typical values of the particular diagrams must be summarized.
F=20 kv M=100 kNm

3m 3

20

10 10 + MF 30

100

50 100

- MM

100

201

2.3. THE DIFFERENTIAL EQUATIONS OF INTERNAL FORCES
2.3.1. IN THE PLANE CASE OF LOADING

The straight beam loaded by concentrated force, concentrated moment and
uniformly distributed transverse and axial loads is considered (fig.2.5).

a a2 ad a4 an ——

¥ ’ ¥ ¥ ’ /
Fig. 2.5: Straight beam under loading
To derive the differential equations of the internal forces of the segment in
which the distributed loads act the infinitesimal beam part is examined.
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Fig.2.6: Infinitesimal beam part

Further, the equilibrium equations of the infinitesimal beam part are
written:

1) ;5.0 -t; (2.9)

[ldx;

2) 5i,;70-q; (2.5)

[ldx;

3) Omom,;,p,, F; J0; M CIdM - M Ugdx® -V dx [J0. (2.6) ; 2

The term gdx?* is very small and it can be neglected. In this manner, the
relation ,

MV is obtained. (2.7) 4,

right

It can be proved, if the distributed loads functions [ 1 [ 1 and
[1 [ are continuous functions,

then the differential equations of the internal forces are:

INO OO0, 800000000, 9M

dx dx
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The distributed loads [ 1] and [ [ ] are supposed to be
positive when their senses coincide

with the positive senses of the internal forces

1O

and

0

v X , respectively, for the left beam part.

A small beam part of length [1x is considered. The
distributed loads [J [J[] and [J [J[]

represented as continuous functions act upon this small part of the beam.

My M
Nig f n1 o CW\ Niety

A \/44?-*:?—-*
§ tgw LRt kA Vit
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Fig. 2.7: A small beam part of length []x

The coordinates and [Jare measured from the left end of the segment. x is
the distance to the left section’s center of gravity of the beam part
considered, while [lis the distance to the arbitrary

section of the beam part considered. The distributed loads
have intensities [ 1[1[] and [0 [,

respectively, corresponding to distance [1. The internal forces with their
positive senses are introduced

in the two sections of the part considered. Because of the
small length [] x, the loads [J] [J[] and [J] (][] can be
considered as uniformly distributed with intensities equal to

(1070 and [0 Ty, where x L1010 x L1 0x 5 x Ly L0
x LJLx . Then, the resultant forces are Ry [ qD UOx and
R, 0“2 YO Ox, and; »

their point of application is on the beam part considered. The distance
between the resultant forces point of application and the right beam end is
kU] x, where 0L k 1.

The beam part considered is in equilibrium and the equilibrium equations
can be written, as follow:

1) ;i OO O OOR,00; (2.9)
O

i

2) 5i, 00 O OOR,00; (2.10)
O

i

3)Omomyign, F; 00; MOx O0x0 O O O OO0
ORGkOIx O 0 (2.11)
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i
First, the expressions of R, and R, are substituted. After that, dividing by
[lx, it is obtained:

NO OOO O0p0, X000 0010, 1)

Cx O x

MOO OO OO0 O O100x @13)

Cx

Further, the transition [(Ix [J 0 is made. In this case [ x " x. The
equations (2.12) and  ,

(2.13) become equations (2.8).

These differential relations are correct when the distance x is measured
from the left end of the segment. If it is measured from the right end of the
segment, then the equations will have a form:

INODO OO0 0O 0 00,90 O 00, (2.14) d dx dx

2.3.2. IN THE SPATIAL CASE OF LOADING
The differential equations of the internal forces, when the distance x is
measured from the left end of the segment, are:

d NLI[] DD;dVyD OO O O DD;(Z.IS)dxdxydxsz

xH U e, n0 000 00,dM,00 0 00 00,
(2.16)dx [I-mx ;dxzydxyz

The functions of the distributed loads in the right side of
these equations are: [ 1 [] - the

intensity of the axial load;
axes y and z, respectively;

y UL and ; L1 [] - the intensities of the transverse loads
parallel to the my, LILJ,,, L1 [1and , L] L - the intensities of
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the distributed moments

parallel to the axes of the Cartesian coordinate system.
If is measured from the right segment end, then the differential equations
will be:

iNnyJOOOOoOoooood

dx LIt x sdx L] (217)

ydxz;

ar-P UHam, xp0 0 00 00,dM,0 0 00 OO0,
(218)dx [I1x;dxzydxyz

Problem 2.3 Determine the internal forces functions of the beam shown
and apply the differential equations to check the result.

[J m iJ Il
A0 kN o B=30 KV

Im im om

First, the support reactions must be determined:
LIF;, 1J0; 15.3A; L10; Ag [145 kN;

1

M , UJO; 7B -80.2-50 [10; 7B [ 210; B LI30kN;
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Mg [J0; -7A,[180.5-50 [J10; 7A,[1350; A, 150 kN;

Check:
[F;, U 0; AL B-80 [10; 50130-80L1 0; 80-80 [10.

1

 Rq=20.x

q=20 kN/m

£ ' M
Aw=45 kN : N

X/2 L \
Av=50 kN X

segment AC : 0 [
x [ 4m

OF, 0J0; N -45 [J0; N [J45 kN;
i
OF,, O 0; 50- 20x -V [J0; V [-20x [J50;

1

M, ip J0; M [020x.% -50x (1 0; M [J-10x2 [I50x.,

Differential check (check by the differential equations of the internal
forces): t [J0; q L1 20 kN / m;

dN[O DD;ODO; dv

dx
dM

D0 00 5 -20 L1-205dx ] [ [1; -20x (15000 -20x [150. 4y

segment CB : 0L x [13m
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V

M{ t=
\ tJSEN/nl

3-X 2m

50 kN.m

4 #

F;, 00; -N 0150 O 0; N [I-15x 45;

i
[IF,, 11 0; V J30 1JO; V [1-30 kN;

1

O Mgection J0; - M (13000 [-50 [10;

M [J-30x [ 40.
Differential check:
t 115 kN /m; g L10;

INOoO O ;s -150-15; v

dx
dM

U U 0O eaxo0 0o.; -300-30.dx

segment BD: 0 [1 x L1 2m
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2-X

OF, OJo; N O o; YFHY o; v o,
ii

M ecrion 110; -M -50 1J0; M U -50. Differential check:

t L1 0 LJOo;

dNOO OO, 90 0 00, pgeax 0 ax MO O OO,
[10.dx

2.4. INTEGRATION OF THE INTERNAL FORCES
DIFFERENTIAL EQUATIONS

This approach is applicable when a complicated distributed loads act upon
a straight beam as well as a curved one. The essence of the method is the
integration of the internal forces differential equations (2.8) in every beam
segment.

To determine the integration constants the boundary conditions of
equilibrium of typical beam sections must be written. These beam sections
are separated by cuts at infinitesimal distance from the section. It is
important the unknown support reactions must not take part in the
boundary conditions.

After the internal forces functions have been determined, the internal
forces diagrams can be drawn.

Problem 2.4 Apply the integration method to find the internal forces
functions of the beam shown.

The beam contains two segments and the differential equations (2.8) are
written and integrated for each of them, as follow:
segment AC : 0 L1 x L1 4m
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¢ 000-54¥ 00 OO0V U U O5; N OO 0O5x0Cregy dy

The function

()x is a parabola of a type (] (I ax?

q [1bx[lc . To find constants a, b and c

the conditions [1L1[10; L1130 m L [ L]0 will be used. It
is obtained: a [1-1,2; b [112; ¢ [J0. Then, (1011

-1,2x2[112x .

The differential equation is written:

VOO0 00 00 D0 12xD 01,265 12x, dx d

and after integration it is carried out: V O (O 0,4x3 -6x2
[1C, . Further, the differential equation (] [J []J;dM Uy

] 0,4x3 -6x2 [JCy is examined. The

dx dx

expression (1 0,1x4 -2x3 (JCyx [JCj is obtained after
integration.
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parabola

B 5 kN
T 5 kN/m TB &
Avr am B 1m
5 5
@ W SR
20
37,5
IS
Olgws
2,768 m
o
62,5
1m
(w)
@
LU 47 6
67.254

To find the integration constants the boundary sections A andB are
investigated: Boundary section A:
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M 4 Do; 1) MO OO o.

18 Boundary section B:

)

MO 5k
N(5) ™~ ‘V““K == X

10
N [5x -20; V L1

To find the internal forces functions in segment BC the method of section
will be applied and the right segment part will be considered.
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\Y,
ML sy
G

1-X
A~ r
¥z
[1;
0v;
OM O 0; M JO.

OHO 0; 2)N 0 O 05; OM go; 3)m O 0101 o.

The integration constants are: C;[1-20; C,[137,5; C5[10. The full

expressions of the segment AB’s internal forces functions have been
already found and the diagrams can be built.

1 0,4x3 (12 37,5; M [ [110,1x4 -2x3 [137,5x.

2.5. CHECKS OF THE INTERNAL FORCES FUNCTIONS AND
DIAGRAMS

2.5.1. CHECK OF THE INTERNAL FORCES FUNCTIONS

The differential equations of the internal forces have to be considered:
- In a plane case of loading — equations (2.8);

- In a spatial case of loading — equations (2.12) and (2.13)

This check has been already performed in problem 2.3.

2.5.2. CHECK OF THE INTERNAL FORCES DIAGRAMS
a) Check about the type of the diagrams
The last two differential equations in (2.8) are rearranged in a form

2MU U5 dVO) O 00, (9.19) dx2 dx

It is obvious, if in some beam segment [ 1 [ ] [] const, then
the shearing force function V [ 1] must be linear, while the
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bending moment function [ [ ] must be square. If [ ] [ 1[0,
then V [ must be constant, while [ ][] must be linear
function. Furthermore, if in some beam segment the
distributed load [] [] points down, then the function V [1[]
must decrease, and the convexity of -diagram must direct
down. However, if [ ] [] points up, then the function [ ][]
must increase, and the convexity of -diagram must direct up.

b) Check about the steps and kinks in the diagrams

F

O

®W

If a concentrated axial force F If a concentrated transverse force F is
applied at some beam section, then the step in V -diagram must exist at the
same section where the magnitude and the sense of the step coincide with
these ones of the force. Besides, the kink in M diagram must exist at the
same beam section where the sense of the kink is in the sense of the force.

is applied at some beam section, then the step in -diagram must exist at the
same section where the magnitude of the step is equal to this one of the
force while the sense of the step is the force’s sense rotated at an angle of
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909 clockwise.

If a concentrated moment is applied at some beam section, then the step in
-diagram must exist at the same section where the magnitude and the sense
of the step coincide with these ones of the moment.

M

—_— s
O,
()

c) Area check
The differential equations (2.8) are considered for any segment and the

rearrangements are made, as follow:
1

d MO0 O Odx; O OOOV(x)dx, (2.20)

00
where [ is the length of the segment. The integral in the right side of the
equation represents the area A | of - diagram. Then, using (2.20), it is

obtained:
MOO O 00 Ayy .. (2.21)

The other two equations in (2.8) are integrated in the same manner:
1
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d NLI1L OIdx ; L1dN(x) O Ul-t(x)dx ; (2.22)

00
1

d v U0dx ; LdV(x) U L-g(x)dx. (2.23)

00
1

Introducing [1-t(x)dx and [1-q(x)dx (2.24)

00

which are the resultant forces of the distributed loads [ []
and [ [, respectively, the relations (2.22)

and (2.23) become:

NOO O 00, 0 O O OO-R, - (2.25)

Problem 2.5. Make the area check for problem 2.1. segment AB: 0 [ x [
3m

NUOO OO 0Jo-;.0 TJo; oLJ0; VI [ |:|0-;q -10-500[1 -20.3;
-60 -60; MLIL1 L1 L1 Ay ; 110-5001 [150-1001.3/2;
60160 .

segment BC : 0 1 x L11m

NOO OO 0Jo-;.0 TI0; 0L10; VLI [ DO-;q -10 [10; 0L10;
MO0 O OO Ay 5 100-110 [1-10.1; -10 -10.

segment CD: 0 L1 x [] 2m

NOIO 00 110+, 0 LJo; 0010; VIO LI U1 T10I-Rg 5 0 LJ0; 0LJ0
s MUIU O OO Ayyp5 100 L 0; 0L10.
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d) Check about the equilibrium of a joint

First, the joint must be detached from the construction by the imaginary
cuts through it. Then, if the concentrated force or moment acts at the joint,
it must be put. Further, the internal forces with their correct senses have to
be introduced in the cuts’ sections and the equilibrium equations of the
joint must be written. Finally, the equations obtained must be checked.

CHAPTER 3
STRESSES

3.1. STRESS AT A POINT

A deformable body loaded by surface as well as body forces is in
equilibrium. In order to investigate internal forces the body is divided into
two portions by imaginary plane and the left portion is examined.
Influence of the right body portion on the left one is accounted for the
internal forces reduced about the cross-sectional center of gravity. Thus,
the internal forces are defined as concentrated forces and moments.

Actually, the internal forces are distributed and their magnitudes are not
constants in the cross-sectional area. Therefore, it is necessary to introduce
the concept of stress which will characterize the law of distribution of
internal forces.

A small area []A around point K in boundary plane of the left body
portion is considered. The internal forces acting on the boundary plane
give the influence of the right body portion on the left one. Some of the
internal forces act on the small area [ 1A only and they are reduced about
point K. Statics proves that the result of the reduction of set of forces about
point is a main vector and a main moment. However, the area upon which
the forces act is very small and, thus, the main moment is neglected.
Furthermore, it is supposed that the main vector [ 1R correctly describes
the state of internal forces on the small area [ JA around the point.

The concept of stress was introduced by Cauchy in 1822. Stress is the
intensity /density/ of the internal forces distribution on the small area
around the point of the deformable body.
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I'II The average
stress on the area can be described by the expression
pav U] IR . A

It is well-known that the material building the body is distributed
uniformly in the whole volume of the body. Thus, the limit transition
(110 can be used. Then, stress on the area of normal n around point K
is

pn Olim RO dR,

Haro LJA dA

The SI unit for stress is Pascal (symbol Pa) which is equivalent to one
newton (force) per square meter (unit area): 1 11V, ,

The vector of stress depends on the surface forces, body forces, on the
position of the point considered, and on the orientation of the area around
the point.

The stresses on the different planes passing through the point considered
are different.
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Generally, the stress vector is inclined at an angle with respect to the plane
of the cross-section. Let [ to be the angle between stress p,, and the cross-

sectional normal n. Then,
[1,00 p,, cos Ulis the normal stress on the plane of normal n,

101 p, sin Uis the shearing stress on the plane of normal n.
n

The normal stresses arise when the particles of the body strive either to
remove or to approach each other. Shearing stresses are related to the
mutual displacements of the particles in the crosssectional plane.

It is evident that

p, 0 020 0O°2.

nn

The vectors of these stresses have the same origin. Then, their tails will lie
on the ellipsoid of stresses, named Lame’s ellipsoid.

The state of stress at point K represents a sum of all stresses onto all
possible planes passing through the point.

p,
\ / Py

P, ,/
-

The investigation on the state of stress gives a
possibility to analyze the strength of material when the random loading
acts upon the body.
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A body loaded by a set of external forces is given. An infinitesimal
parallelepiped of dimensions dx, dy, dz in the vicinity of arbitrary chosen
point of the body is separated. The normal and shearing stresses about the
point investigated will act on the walls of the parallelepiped.

Normal stresses are written with one index. It corresponds to the letter
of the coordinate axis parallel to the normal stress considered.

Shearing stresses have two indices. The first one corresponds to the index
of the normal stress of this wall while the second index is the letter of the
coordinate axis parallel to the shearing stress considered.

Z

X
b

The behavior of the body acted upon by external forces does not depend
on the coordinate system. Therefore, the state of stress can be described by
tensor, named Cauchy’s tensor.

Engineering, Books


https://t.me/EngineeringBooks1

3.2. THEOREM OF THE SHEARING STRESSES EQUIVALENCE
The theorem gives the dependence between the magnitudes and directions
of the shearing stresses acting on two mutually perpendicular planes
around a point.

The moment equation of equilibrium about z-axis of the forces loading the
walls of the parallelepiped is:

[]
Xy
dydzdx

[]

yXx

dxdzdy

[]

0

O

Uy

In the same fashion: & [ [J 2 and” O O, yz 2

Shearing stresses on two mutually perpendicular planes are equals. They
are either “meeting” or “running” to each other.
3.3. THEOREM OF THE TOTAL STRESSES EQUIVALENCE
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The stresses on two planes of normal n,; and n, passing through the same

point of deformable body are given. The essence of the theorem is that
the projection of the first stress on the normal n, is equal to the

projection of the second stress on the normal n,.

3.4. PRINCIPAL PLANES AND PRINCIPAL STRESSES

Augustin Louis Cauchy found that three mutually perpendicular planes
onto which the shearing stresses take zero values exist at every point of the
loaded body. These planes are named principal planes, their directions are
named principal directions, and the normal stresses acting on these

planes are named principal stresses labeled by D,D,3 19

CHAPTER 4
THREE-DIMENSIONAL STATE OF STRESS AT A
POINT

4.1. DETERMINATION OF THE STRESSES ON RANDOM PLANE
AROUND A POINT WHEN THE STRESSES ON THREE
MUTUALLY PERPENDICULAR PLANES ARE KNOWN

The state of stress at a point is known when the stress p,, on random plane

around the point

can be determined.
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D

X yX 7X
The stresses

p
OO

X Xy ;lqyyr;ljzzy
] O
xzyz [z

and the unit vector of the normal n

e [ ] cos U p,,
e, L1Ucos L are given. The task is vector p, pp, to be found.

[10cos L1 p,,,

Apac =DA; Apope = ADA; Apoac = HAA; Apoap =VAA;
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AV ='AA.h,

LIX,00; i

lim U- L, Agopc - HyAooac - HuAnoaos U Pux Anasc LGy

OO 0o; ooo

lim (-0 AAA-T, uAA- T,,vVAA+ p, AA+G,AA.h/3)=0. h- 0

This expression is divided by h and, thus, p,,, is obtained. The expressions
for p,, and

Py, are obtained in the same manner.

Pnx = A0, + HTyx tVT,y Py Pry = )\Txy + po, vty
Pnz = )‘sz +I'1Tyz tvo,

p, U ep, L1 Up, U Up,

If the vectors of stresses on different planes passing through point K have
the same origin, then the connection of their tails will form an ellipsoid
named ellipsoid of the stresses (Lame’s ellipsoid).

4.2. STRESS TENSOR

The stress tensor is a sum of nine stresses and it is represented in the form
|:|x u VX sz

My Uy L,y

sz |:lyz |:|z

Applying the theorem of the shearing stresses equivalence, namely™ []
Ly s o0 Xy yz Y0 0O,,, it can be concluded that only six stresses
are independent of each other. These six ,,

parameters define the state of stress at point K.

The normal stress on the plane of normal n is

[
;U0 e
2220 0,4,0 0,0,020,,¢0 020, 00 O 200,00, e,

while the shearing stress on the same plane will be obtained by expression
02 0p?- 02,
4.3. PRINCIPAL STRESSES AND PRINCIPAL PLANES
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There are three mutually perpendicular planes on which the shearing
stresses take zero values. Normal stresses on these planes are named
principal stresses and they can be obtained by cubic equation

3 _q2
(In C1b Dn -c 0, [n
where a L1 L1, LT 01 L L5

— 2 2 - - LT, 0T 07T 0O
b—GX Gy +GyGZ +0,0, - T° -T 72 =xy yz 2x =0, Tyx Gy Ty 0, T, xyyyzzzxxC

O'sgsgaodOg o~ o~og

222

e I I e I I I B B g
sz I:lyx |:|z

a, b and c are the three invariants of the state of stress at a point.

The roots of the cubic equation are always real and they are labeled by

yx . Uxy Uy Uzy

00U UUOUOY | First root has the biggest value, i.e. it
is maximum, while the third root 1 3

123
has the smallest value, i.e. it is minimum, compared to all normal stresses
existing on different planes passing through the point. The directions of

[1, [,5, i.e. the normals n;,n,,n;, of the
12

planes of principal stresses are principal directions at the point. They are
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obtained by the set of equations

0,000, 0 O, 00 O, O, O 0,

LI

- 0,000, 0,00,

S 1 s

[]
22

10

0, d, 00, ¢0 O, 00

nnZ

200, 01604

"n

If the three principal stresses at a point are not equal to zero, then the state
of stress at this point is called three-dimensional (spatial) state of stress.
If two of the principal stresses are nonzero, then the state of stress is two-
dimensional (plane). If only one of the principal stresses is nonzero, then
the state of stress is one-dimensional (linear).

4.4. EXTREME SHEARING STRESSES
The extreme values of the shearing stresses can be calculated by the
formulas

Dloooooo-Oo0,0l'0-0,00l0-0.10. 0
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9325313512

They are named extreme shearing stresses and they belong to the planes
passing through the point and making the angle of 45° with the planes of
principal stresses. The normal stresses on the planes of the extreme
shearing stresses are

Ooloooooooo,oolog,oaloo L n1
2 [

23n2731n,3512

CHAPTER 5
TWO-DIMENSIONAL STATE OF STRESS AT A POINT

5.1. DEFINITION
When one of the roots of the cubic equation mentioned earlier is equal to

zero, then the state of stress is two-dimensional. Usually, @ (5 [ [,
[10, i.e. the stresses different than zero lies ,, ,,
in the plane xy.

5.2. STRESSES ON A PLANE OF NORMAL N

The point K from the body loaded by external forces is considered.
Stresses,[], ,[land

U O yx on the horizontal and vertical planes passing through the point are
known. The task is to ,,

obtain the normal and shearing stresses on random plane of normal n
making angle [ Jwith x-axis.

Engineering, Books


https://t.me/EngineeringBooks1

The projections of the total stress p,, acting on the plane considered are p,,
O eP0 O and p,, [ o~ [0 (O™, where e[Jcos [lsin . XYX XY Y

The normal and shearing stresses are expressed by these projections in the
following manner =[] p, cos (1] Ppysin L U0 p,,sin O- Pnycos L, p

Then, the expressions for p,,, and p,, are substituted in these formulas.

Further, by application of the shearing stresses equivalence theorem,

namely = [ yx the normal and shearing ,,

stresses on the plane are obtained as
HOHcos? 0025 sin Odcos OOYsin? DU O OYOMOsin Ocos O-H
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2 .2
Leos® Dl-sin” L0, vy ynxy xy
After that, the trigonometric relations are used, as follow:

sin? 00 O O0/2; sin20 0 2sin Ceos [eos2(0 ]
cos? [1-sin? (1.

Thus, the normal and shearing stresses on the plane of a normal making
angle [Jwith horizontal axis are carried out:

o1 00 -y €0S2a +Txy sin2a; Tp =1 0 sin2« -Txy
C0S20p =2 gx +oy + 2 X2 0X - y

5.3. ANALYTICAL SOLUTION
a) Principal stresses and principal planes
In order to find the principal stresses condition

d
1™ 0isused: 4

d Un 10U ginp (20 cos202 0. g 1 2 Oxy xy

It is evident that the condition for the extremum of ,[] matches to the
condition for the annulment of ,[ 1. Thus, it can be concluded that the
shearing stresses are equal to zero on the planes

of extreme normal stresses

. Further, the angles

[]

1,2 of the principal directions are obtained by trigonometric equation
1g22.

-

Xy

The relation between two roots of this equation is ©[J 5 U It is obvious
that the , 1 5

principal planes are perpendicular to each other.

The stresses invariants for the plane problem are a [1=[1Y;p (OHH.2
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L]0

Xy
The principal stresses are obtained using the following expression: [ -
0?2

xyxy [

S 000000Y on 072002520

b) Extreme values of shearing stresses d

]
nEIO;dD
O-00 DDDDDtQZDDXy;DDDD4;432.2D31

Xy
[]

max/
min
[]
L]

O -0 002
DDXleD DyD =2 L DDZ; |:|3,4 |:|2x|:!xy

7 from o, fo o,
T o

q

=%

/]

o, =0.
5.4. GRAPHICAL SOLUTION - MOHR’S CIRCLE

c) Planes of pure shear

H1OBHEE cos2000 sin2 Oy -2 xy 2 x ay

H.0 O100sin2 -5 cos200,, 2 5y
HHapob2igm2nby o, , oo OHH2

[

n
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[y 4

00O 0% O R? - Equation of a circle
U Aqob2 IDDZDDZ;DD n2 00 b2

]
O,y
4

0'|

Ale; -7,); B”{; 0; (a0

X

Center
C
10

1
1O
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L1

y

;0

10

Radius

[] -

mEning

RO OO OO OY2;
-2 [

T
1 T
A R=\1c.- 0,)+ T3

0 , o

fa
)

\j

CHAPTER 6
STRAINS
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6.1. BASIC NOTATIONS
Each loaded body is deformed. Its form and sizes are changed because the
points of the body change their position.

Let a point [ [ is an arbitrary point of loaded body. This
point will take a position M'L1[] after the body’s
deformation.

The vector of the displacement [ ] (1L 1MM" is defined. Its

projections are D, [ 1 u x; y;z ;Hu U, D, L1wll L. (6.1),
ul 1], 1] and 1L are displacements along the axes x, y
and z respectively.

Three points of the loaded body are shown
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e

i

-
-
-

D 4 M(xy)

&

L] P
V

My N

()
() U X

Fig. 6.1: Three points before and after the deformation
Linear deformation in a point M at the direction of the axis x is

0 M'N'-MN, x (lim MNMNLCI0

Angular deformation L1, in a point M of the plane xy is the small angle

of the change of the

right angle between two directions before the body’s deformation.
Deformed state is the combination of the linear and of the angular
deformations on the axes and planes passing through this point.

6.2. DIFFERENTIAL EQUATIONS OF THE GEOMETRY
(CAUCHY'’S EQUATIONS) Elementary parallelepiped is considered. It
is connected with a coordinate system. Points
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K[ 1[and L1[] are chosen. Their positions after the
deformation of the body are [ 1 []
and (][],

L

'z

K'tu;viw)

£
P

I
I
___________ ——

Afdk;0:0)

A'(dc+utdu; v+dv; w+dw)

Fig. 6.2: Two positions of AK

The functions of the displacements [ 1 [ ], [ ] [] and [I[] are
continual. Their

deformations are presented in this form:
dudBY dxOB dy OB dz, o, Oy Oz

dvd™v dx OBV dy [ DvdZ’Dx Oy Oz
dw5vdx OB dy O5Y dz., Oy Oz
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The deformation in the direction of x is considered and that is why the first
addend is non-zero.

Then the coordinates of a point A’ are A'“dx Ou OB dx;y OV
dx;wd5Y dxH. The vector A’ K' is 0y (x Ok OO
A

K

Hax OB dx; Y dx;HwdxH and its length is AK' OdxH1 0y U2 HLvE2

O0wD2
Y=l Oo OxOx Ox 00 O Ox 00 Hosoxo0 Uos oxoo - The
second

addends are neglected and AK' Odx=10594H 5 5. o0

Then the linear deformation in the direction of x is
dx
[]

04 — Oul
105Y-dxp, yOo o= Ox00: 00

dx* Clx
The formulas of the other linear deformations are deduced by analogous
way. The Cauchy’s equations are

O Ou.O0 O O]
il S V’XDDxxyDny

0 DV; oo Uvo Uwy,ooyy. 0.0y
Cw Ow Qu O

z [z zx L] D;'DDX Lz

6.3. RELATIVE PROLONGATION IN ARBITRARY DIRECTION
THROUGH A POINT OF A DEFORMED BODY

Let the direction ris defined by the cosines e, [ 1, [of the unit vector. The
relative

prolongation .[Jis "5 2 OHU2 OH2 O eO0OY OO O e
z[1 xy yz zx

It is evident that it is expressed with the relative prolongations on three
perpendicular directions and with the angular deformations.

6.4. PHYSICAL MEANING OF THE ANGULAR
DEFORMATIONS
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2
_ch :

O -

0 .

Fig. 6.3: Two positions of the points A, B and C On demonstration can
draw the following conclusions:

d vy 09V dx; d ug 174 dy; Ox Oy

nodvego Uv.ooduco Uug gxoxeayoy

] DDDZ Hu 0v ay1OyOx

Analogically are obtained the formulas: o Uvy Uw. o g Uwg Uu ), o
Uz Oy zx Ox Oz

xy s yz » 2x are a measure of the change of the angle between two
perpendicular linear elements. Their directions before the deformation are
defined with lower indices of []. 6.5. TENSOR OF THE
DEFORMATION

Otato

X2 XyZ XZ
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lOogtgr DZyxyZyz

lOlOd D ZXn 2y Z

The main axes of the deformations coincide with those of the main axes of
stresses. For these deformations tensor has the form:

Hoo,
TOoYo.,

0
0

[]
3

Invariants of deformation tensor are:
OO0 00 oy oo ggd I:I;123Xyz

I
2

]
OO0 ddd 22331
LU OO Oy 55,

6.6. VOLUME DEFORMATION
Volumetric strain is defined as the relative change of the volume of
material at a point of a deformable body.

0oPoP0f0r,. ,,,

6.7. SAINT-VENANT EQUATIONS OF THE CONTINUITY OF
THE DEFORMATIONS

00?0 P 00000000000, 02 00,0y yeox
Ox2HOx0Oy OxPP O, 00 O0yPE Oy Oz0 2> 0O

[]

ZDDZD 12 DD DD -0 HEN DDZ (12 [

YO zYZzx XYY

Oy?H Oz Ox OxFH Ox OyH 0200 O 20 022> O
[]
U020 mMO00000000dod2 2 dx DyZD DyDZ;DD Dy-

Oz5 OxH Ox O y O 22

ZIXZIXXYYZZ

Cx=> [
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CHAPTER 7
DEFLECTION OF BEAMS

7.1. INTRODUCTION

The object of investigation is a straight beam loaded by a set of forces
situated in the principal beam plane xz and the important assumption is that
the beam axis will belong to the same plane after deformation.

A cantilever beam acted upon by a concentrated force at free end is shown
in fig.7.1. The positions of the beam axis before and after deformation are
drawn. The Cartesian coordinate system with origin at the fixed support is
introduced. The x-axis coincides with the beam axis while the z axis is
directed down. Axes y and z are the principal axis of the beam.

ax) FC

x a(x) w(x)|

X

C’

F

|

z

Fig. 7.1: A cantilever beam before and after deformation

A random beam section at a distance x from the fixed support is
considered. The section’s

center of gravity /point C/ occupies the position C' after deformation. Due
to the fact that the line CC' is too short relative to the beam length [ it is
accepted CC' to be perpendicular to the horizontal, i.e. the displacement of
the section along thex -axis to be neglected.

By definition the deflection is the vertical displacement CC of the beam
section’s center of gravity. It is perpendicular to the beam axis and it is
denoted by w.

If the deflections are determined for every beam section, then, the new
position of the beam axis will be known. The beam axis after deformation
is named elastic line of the beam.

Furthermore, it is accepted the validity of the Bernoulli’s hypothesis in
accordance with which every planar beam section normal to the axis
before deformation remains planar and normal to the beam axis after
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deformation. The two positions of the random beam section at a distance x
are shown

in fig. 7.1 where the angle [ 1] between them is also given.

By definition the angle of rotation[_l/the slope/ is the angle between the
positions of the beam section considered before and after deformation.

The problem about the stiffness of the beams subjected to bending is very
important in the engineering practice. It is necessary the deformation of the
beam to be restricted. In the opposite case the large deflections will
influence adversely to the construction as well as the adjacent elements. In
the real buildings the beams deflections are considerably smaller than its
span. The biggest vertical displacement of the beam section is a function
of the length L, for exampleL/1000.

The position of the beam axis after deformation is known when the
deflection w and the slope [lof the random beam section are determined.
These two parameters depend on the coordinate x of this section. It is seen
the angle of rotation [lis equal to the angle between the tangent in point C
and the x-axis. The angle coefficient in point C' of the beam axis after
deformation is tg L1w'. Because of the small angle of rotation [lit can be
supposed tg [L1[1 [1. Thus, the relation between the functions

of the deflection [ 11 and slope [ 11 is:

[1dw'. (7.1) Then, the conclusion that the beam axis position after
deformation is completely known when

the function [ ][] has been derived is made.

7.2. THE DERIVATION OF THE ELASTIC LINE DIFFERENTIAL
EQUATION FOR A STRAIGHT BEAM

A beam loaded by a set of forces situated in a vertical plane xz is
investigated (fig.7.1). Thus, the bending moment obtained is along y-axis.
When the straight beam of constant cross-section is subjected to special
bending, it bends about principal axis yunder the action of moment M, and,

then, the curvature of the beam axis is:

[]
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[
IDMy
.(72)REI,

Here, E is the modulus of elasticity, Ris the curvature radius after
deformation, I, is the principal moment of inertia about y-axis. The

product E I, is named the stiffness of the beam

subjected to bending.

If the transverse forces act upon a beam, then the beam axis will not bend
in an arc. It is allowed the equation (7.2) takes part for every beam section
at which the bending moment

M, acts. It is obvious for the beam of the constant stiffness E I, when the
bending moment My changes, then, the radius of curvature R changes, too.
The axis z in fig. 7.1 is directed down. It is convenient because the

loadings in the real problems cause the vertical displacements having
downward sense.

The elastic line curvature [lin point C can be expressed by
the function [1[] applying the

well-known equation of Mathematics:
d’w

0010
L oUdwll,Uspooo o ax oo oo

The strict equation of the elastic line is obtained by the comparison of the
right-hand sides of (7.2) and (7.3).

d’w

dx2My (7.4) n0,n0d w,03, EL, oo 05 gy 00 00

d x?

r-(7.3)

[]

This is non-linear differential equation which strict solution is very
complex. Because of that the equation is rearranged using the condition of
the small deformations in a beam — the angle of d

w [d w12

rotation [1[1,; L[] w' has the values from 0,001 to 0,01 rad. Furthermore,
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the values of 4 4, o in the x = [

denominator will be much smaller compared to one. Then, the equation
(7.4) can be written in form:

d
2w

O OMY  (7.5)d x° Ely

Next step is to obtain the correct sign in the equation’s left-hand side. The
elements of the beam after deformation are given in fig. 7.2 where the left
sketch shows the element subjected to positive bending moment while the
right one shows the element subjected to negative moment.

X X
My> 0My> 0My<0My<0

,W’(x) <0,w”(x) >0

Fig. 7.2: The beam elements subjected to bending moment M, after
deformation M,

It is known from the Mathematics, if the function’s second derivative is
positive, then the function’s graph is concave and vice versa. Thus,
analyzing fig. 7.2, the conclusion that the functions

10

M" always have opposite signs can be made. , 4,
Finally, the approximate differential equation of elastic line is obtained:

ELw"00 00, . (7.6)

There are some different methods for the determination of the vertical
displacements in beams.

7.3. DIRECT INTEGRATION METHOD
This method is applicable in the cases when the whole elastic line of the
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beam must be found.
7.3.1. BEAMS OF CONSTANT CROSS-SECTION
The stiffness E I, has constant value along the beam length. Then, only w"

and M, depend

on x in (7.6). This equation can be easily integrated and the
function [1[] as well as function [1[1[]can be directly
obtained. The integration is: gy, L 1L LIL] LD O,

deCl; (7.7)), EIyWD D D D D DMyD D dx dx DCIX DCz.
(7.8)

The constants C; and C, will be derived by the kinematical boundary

conditions. They correspond to the constraints of the beam and they are
related to the deflection w and the slopel].

a) Simply supported beam acted upon by two moments (Fig.7.3)

M M MMY

x*xVzl

XZZ

Fig. 7.3: Simply supported beam upon which two moments act The
bending moment is constant M yD M . Then, the differential equation (7.6)

takes a form:

EL,w"[ 1L -M . (7.9) The functions LI ][] and L1L] are
derived by integration:

El

y
w

X

[

HiEpEIN

gr L -M x LCy; (7.10)

EI wOOO-0,5M x2 OCy xOCy . (7.11)
y . n
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To obtain the integration constants C; and C, the kinematical boundary

conditions are used — the vertical displacements in the both beam ends are
equal to zero:

w0 O000. (7.12)

Then:

Finally, the functions [ 1L and L1 [] are: EI, [JLIL1L] -M.x
[10,5Ml ; (7.14) EI 00 0-0,5M x? [10,5Ml x . (7.15) yw

b) Simply supported beam acted upon by a distributed load of
intensity q (Fig.7.4)

gxq My

« Nx 0,501 X 54 0,5q1 XV x/2

z
z

Fig. 7.4: Simply supported beam acted upon by a distributed load of
intensity g

The bending moment function is:
M,00 O-1x201q1 x (7.16) 2,
The elastic line differential equation (7.6) is:

ELw"1L] L 1gx2-1 gl x. (7.17) 5 » The functions of slope
[ 1] and deflection [ ] [ ] are carried out by integration:

Er-H UHO1 g3 1qlx? OCy; (7.18) yw' x O
Y6 4

EI,wO OO gx* -1 gIx3 OCyx 0Cy. (7.19) 24 12
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The integration constants are:
C, 0Jo;c, Ot q3. (7.20) o4
Finally:

EI, 00001 x3 -1q1x2 01 q1%; (7.21) 6 4 24
EIy wOO! qx4 A ql x3 11 q13x . (7.22) 24 12 24

¢) Cantilever beam loaded by a vertical force F at free end (Fig.7.5) Fl
Fl

FMyy

Z7Z
Fig. 7.5: Cantilever beam loaded by a vertical force F at free end Here, the
function of M, is

MU0 L L (7.23)
and, consequently, EI,w"(x) LIF *L1L1. (7.24) The functions

of 00 and O O are: EIVUH UUO 1 F X207 FIx [1Cy;
(7.25)yw'y2
EI, wOOO-1 Fx3 OFI1x2 0C1x0C,. (7.26) 6 2

The kinematical boundary conditions relates to the rotation and
displacement of the fixed support which are equal to zero, i.e.

wDO 00 . (7.27)

Thus, the constants are
C, 1Jo;c, UJo. (7.28)
Then, the expressions (7.25) and (7.26) take the form:

EI, 00001 Fx? O Fix;; (7.29)
Engineering, Books


https://t.me/EngineeringBooks1

EI,wO OO 1 Fx3 Ol FIx2 (7.30) ¢ o

FP
The vertical displacement of the free beam end is wg [ .

3EI,

d) Cantilever beam loaded by a vertical uniformly distributed load of
intensity q(Fig.7.6)

0.5q1% ; 0.5q1* ; 1y

qlxBXxVvz, ql

N x

Z7Z

Fig. 7.6: Cantilever beam loaded by a vertical uniformly distributed load
of intensity g The bending moment function is

M, x Oq1-x2 (7.31) oo oo

2
and the differential equation of the elastic line takes the form:

EIw"(x) O1q0002 (7.32) 2

Further, the functions of the slope and deflection are obtained:
EL,w-H HHOgx3 1 g1 x2 O g2 x0OCy; (7.33) y 6 22
EI,wO OO gx4 -1 gl x3 01 gI? x? OCyx ICy. (7.34) 246 4

The kinematical boundary conditions are the same like the case earlier.
Because of that C; [10; C, L10.

Finally:
EL, UL (g x3 -1q1 x2 01 g% x; (7.35) g 2 »
EIy wOOo! qx4 A ql x3 [ lqlzxz. (7.36) 246 4

ql*
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The vertical displacement of the free beam end is wg [ .

8EI,

e) Beam containing two or more segments with different equations of
the bending moment

Because of the different bending moment functions the
functions of [1[ ] and [ [] are also

different for each segment. If n is the number of the segments, then the
number of the integration constants will be 2n. To find them, the
kinematical boundary conditions must be written in accordance with the
supports as well as the segment’s boundary points. Some boundary
conditions are given in Table 7.1.

C 180 []y,/051CHO ] O;D/IFIGO DOHCHOWC ccOc

w

N15180,,,051CHO (- DC

C

C

w

/I}IQODWa}ICHO; [J/a60]0scHo C C C [1 c Table 7.1

Then, the expressions of [ 1[] and [] [ for all of the
segments are written and the elastic line

of entire beam is obtained.
Problem 7.3.1: The beam shown in fig. 7.7 subjected to a vertical force F
has constant stiffness EI, . The lengths of the two segments are given as

functions of the parametera. Determine

the functions of the slope [ 1] and deflection [ [ in the
two segments of the beam applying the

direct integration method.
F
ABCxy3F/4as,puxxs

Fig. 7.7: Simply supported beam acted upon by a single vertical force

The equation of the bending moment M, must be determined for each
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segment. After that, it has to be substituted in equation (7.6) and must be
integrated two times.

Segment AC: 0L] x[Lla My

AN

3F/4 x¥

M
y

10
[]

BFX;EIDD
y1 O - % 44

ELwy' UL DL Ux O -3F 2 [1Cq; EIlex O-F x3 OCyx
L1Ca-y18E1y 8

Segment [ x 3a

QM,000-Fx O3Fa; ,,

ELwy" OOOF x-3Fa, MY B 4 4N

Er L0 Dby, Ly x OF x2 3Fa x Ocs; yW2'8 43a-x F/4

EI (10 OF x3-3Fa x2 [1C3x [1Cy. yW224 8

The kinematical boundary conditions necessary to obtain the integration

constants are four. Two of them are related to the supports — the vertical
displacements are not possible, i.e

1) WIDD |:|0; |:||:|2 [10.

The others are written with respect to the beam section C, which is a
boundary section. At this section the vertical displacements and the angles
of rotation in the left and in the right are equal:
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yw, DHH UL U OO0 o O,. »,

The expressions for the integration constants determination are:
1)C,LI0;

2)F 3¢3 3Fa2 ¢330 O0C, 005 24 OO OO

8

3)-Fa30Ca 0 Cy g
4)3F a2 0cC, 0Cy, 4

and the constants are obtained

C
1

O

7

Fa

2Fa? 3Fa®; C,[1 0; C3[0,; C,00, . ¢

Finally, the functions of [ 1] and [] [ in the two segments

take form:
L1

gj\]DNX W ! ]

2 O0O[.Fy37Fa®

EI
[]

y188sEl, 188X
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El

y2000 Fx2 - 3Fay Fa? o Fxs - 3Fayp O Fa? 3Fa’

- s ELWy 0480 x Ly 840
7.3.2. BEAMS OF TAPERED CROSS-SECTION

The cross-section can change smooth or in steps along the beam length.
Then, the moment of inertia Iy is not a constant, but a function of x .

The differential equation (7.6) has the form:
EL,00 00 00,". (7.37)

a) Beams with smooth change of the cross-section

The expressions of L[] and [ [] are obtained by
integration of (7.37): DO 004w O-1 OMyH Ugx[Ocy;
(7.38)ax E Iyl 1]

10

wOOO- OOMUHaxY dx Ocix OC,. (7.39) oo o0
mjm

10O
The solution’s procedure is similar like this one of the beam of constant
cross-section. If M

yUU and
1]

YU yo dx are functions which can be integrated, then,
1L and L] L] can be jy1

determined. In opposite case, the method for their approximate calculation
must be used.
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Problem 7.3.2.1: The cantilever beam of length | shown in fig. 7.8 is acted
upon by a single vertical force F applied at free beam end. The law of
change of the beam’s moment of inertia is

I yD (10 ¥ Y1 while the moment of inertia in section A is a
constant I yD I . The modulus of elasticity

E is also given.
F
ABxx

yl

z
Fig.7.8: Beam with smooth change of the cross-section along its length In
this case, the differential equation of the elastic line has a form (7.37). It is
obvious the

bending moment is UU . Fxand (7.37) becomes: ,
w'Fx or UH OFIX ‘OO0, 0y g x2 Brx OIET

First, the two sides of this equation are multiplied by x. Then, the
integration from A to B is

10

dx
L]

Fl
B 2

made:, 4 g7 L, 0 dx. The integrals in the left-hand side must be solved
separately: AA

dwlLIBBdwlIL] g, DFIBXZDdeDDA g x er Ox 0 dx -

= -

AA
The solution continues with rearrangements as follows:
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O
BB-XAA -BA O EI Ox 0 dx. Further, taking into account x4, L10, wg L1 0 A

O FI O dx U

andgl] [ 0, the expressionw is obtained.

Finally, wa OFB OO 00, 4 5y 00002 O0Eg00 x O

b) Beams of cross-section which changes in steps
The beam of n segments with different moments of inertia I yis [11,2,...,nis

considered. In this case, one of the moments of inertia, for example

I
0

[

A

, must be chosen as a

basic one. Further, EI
0

multiple value of the displacement for every segment must be determined.
The differential equation which has to be integrated for the segment with
moment of inertial; is:

EI() W1" -0 o |:|y1 ’ (7.40)

while for the i -th segment it is:

Elyw'0O0 10 M,;00,i 0. (7.4,

Problem 7.3.2.2: The beam shown in fig. 7.9 has two segments which

lengths are functions of the parameter a. The segment AB’s moment of
inertia is I ,[1 I; and the ratio I, I ~ 2. The modulus ,
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of elasticity is E. Apply the direct integration method to
obtain the functions [ 1] and [] [ for the

two beam segments.

F

ABCIL I, x

yaZa

X X,

Fig. 7.9: Beam of cross-section which changes in steps along its length
The essential moment of inertia I,L] I

F My
AN _Vzis accepted.
Segment AB: 0[] x[la

M, O -Fx; EIgwy" 0 OO Fx; EI00 00O Y OF &2
LCi5 0w1'012
EIOWIDDDFX?’ [1C1x LICy . ¢

Segment [ x 2a
F My

AN

a, Vz

M,00 O O; Elgwy" x 0 00 00 OO 02Fx02Fa;
12

Elyw,' 00 0O, O, x OFx2 O2FaxC3; EI HHOF
XSDFGXZDC3X [1C4. w2 3

The kinematical boundary conditions are:
1)w,00 O 0; FOO OO2 Oc¢32a0C4 [I0;
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Y00 O o; D02 O2Fa2a 0C3 0 03, 3) w200 OO,
;F(13 DClaDCZ DC4; 16
4)DDD 1] = ;Fa2 DCI DC3.122

It is obtained

C
1

17
Fa
2 53Fa3 28Fa’ ; C,[15 ; C3-8Fa? ; C,05 .,

Then, the [] [] and [] [ are: ¢ -multiple values of the
functions

e X

a

2 000wt x O Fx3 -17Fa? 53Fa3

El
[]

0100025 62x L3
EI

0 21000 Fx2 J2Fax-8Fa?; " wy x OF x3 O Fax? -8Fa?x
[] 28F a3

[
EI. 035
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7.4. MOHR’S ANALOGY METHOD

The direct integration method is convenient when the equation of the beam
elastic line must be obtained. However, if the beam contains many
segments, then the application of this method is very clumsy. Besides, in
many practical cases only the deflection and slope of definite beam section
have to be determined. For such cases, the Mohr’s analogy method is

developed'.

The essence of the method is: The differential equation of the elastic line is
written

EIyw" 0] U y - Under the real beam the second beam of
the same length, named fictitious is

drawn. The bending moment diagram of the real beam becomes the
distributed load of intensity g upon the fictitious beam. If the real beam
bending moment diagram is positive, then the load q is directed along the
positive sense of -axis and vice versa. The supports of the fictitious beam
are indefinite. It can be noted that they have the support reactions
equalizing the load q .

The magnitude of the bending moment in every section of the fictitious
beam can be carried out

M . The familiar differential relation [ 1 [ ] [ ] [] takes part.
It is juxtaposed to the elastic line differential equation and it
is accepted L] [1L1 M), L] 1. Thus, the relation EL,w"[!

(100 M"[] [ is obtained. After its integration it is
determined EI,, [ I[] [ [] []. Next step is the differentiation

of the equation above. After that, taking into account [ ] []
(1 O and IO OI0, it is obtained EI , L1000 0.

Finally, the formulas for determination of the deflection w and the slope
[Jin definite section of the real beam are:
v

wOM; OO, (7.53)gy, gy
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The deflection w of the real beam section is equal to the ratio between the
bending moment in the same section of the fictitious beam and the real
beam stiffness EI, . The slope [lof the real beam section is equal to the

ratio between the shearing force in the same section of the fictitious beam
and the real beam stiffness EI, .

1 Christian Otto Mohr (1835-1918) is a German engineer, professor on Mechanics in Stuttgart and
Dresden

These relations lead to the conclusions, as follows:

- If the deflection w is equal to zero in some beam section, then the
bending moment M in the same section of the fictitious beam must be
equal to zero, too.

- If the slope [lis equal to zero in some beam section, then the shearing
force V in the same section of the fictitious beam must be equal to zero,
too.

- If the deflection w and the slope [lare different than zero in some beam
section, then the bending moment M and the shearing force V in the same
section of the fictitious beam must be different than zero, too.

The correspondences between the supports of the real and fictitious beams
are shown in the

next table:

Real Fictitious

beam beam

wOOomMJodo

w O Oom Jo Lo

wl OOom Jo Lo

mimh\4 1o

C Wleft|:| wright[] 0; C Mleft[] MrightDO;CCCC ]
leftD ] right VleftD Vrightcccc

C

w

left right; C M leftT] M right CC;cc
left ight t ight

eft (Jrig VlefDVng |:|C [(Jccc
Table 7.2

It can be noted that the statically determinate fictitious beam corresponds
always to the statically determinate real beam.
The Mohr’s analogy method is appropriate for the determination of the
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vertical displacement w and the angle of rotation []of the definite beam
section. Their determination follows the steps:

- The bending moment diagram of the real beam has to be built.

- The fictitious beam is drawn according to the correspondences in the
table above.

- The bending moment diagram of the real beam is put as a distributed load
q upon the

fictitious beam. g has dimension kNm .

- The fictitious beam support reactions must be determined.

- If the deflection w of the real beam section K must be obtained, then the
magnitude of the

bending moment M in the same section of the fictitious beam must be
determined first. It g

has dimensionkNm® . Thus, the deflection is wy CIMK . g

- If the slope [Jof the real beam section K must be obtained, then the
magnitude of the shearing force

v

k in the same section of the fictitious beam must be determined first. It has

dimension kNm? . Thus, the slope is (1Y% . x O,

Problem 7.4.1: A cantilever beam of length [ and stiffness EI,, is subjected

to a single vertical force F at free end. Apply the Mohr’s analogy method
to find the vertical displacement w, and the angle of rotation 4,[ 1 of the

beam free end.

FFlA
Ely,yl1YFlz

MV,
AAMAFP2FP 2
FB/3FIP2F B/3,

1/321/3
Fig.7.12: A cantilever beam subjected to a single vertical force at free end

First, the real beam bending moment diagram is drawn. After that, the
fictitious beam acted upon by a distributed load corresponding to the

bending moment diagram is built. Then, to find the internal forces ¥ and ¥
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in section A of the fictitious beam, the equilibrium of the left part cut is 4 4

considered and the equation
[]

[]

0

is written. It is obtained V
A

FI? , . According to the Mohr’s analogy method

El
[]

\%
A

takes part. Thus, the slope in section A is

[]

[] -

Fl

2

. Further, Y44 2EI, FI

3

applying the equilibrium equation[] [ 0, the bending moment is
calculatedM, 15 . Finally,

taking into account
EI
[]

M
A

, the deflection is found w
A

[

Fl
3

A
YW 3E

Problem 7.4.2: A cantilever beam of length [ and stiffness EI, is loaded by

a uniformly distributed vertical load of intensity g . Determine the vertical
displacement w- and the slope -] using the Mohr’s analogy method.

ql® 12
q . .
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qEly C /2172

YZql? 12 ql° 18y,

ql® /8

ql® 12

Fig.7.12: A cantilever beam loaded by a uniformly distributed vertical load

The bending moment diagram of the real beam is built. Then, the fictitious
beam acted upon by a distributed load corresponding to the real beam
bending moment diagram is drawn. To find the internal forces of the
section C, the left beam part is chosen for investigation.

The distributed load has a complex shape and it is convenient to be
resolved as shown. The resultant forces of the distributed load are
obtained:

q

102

ql

SqP 022004 ql* 21 gPP

Ry Ug s Ry Ugy 5 flgsn s Ry L3ogg-

All quantities relating to the fictitious beam are labeled by bar.
C M.

ql® 18 V- ql? 12,5

1/6

q
[
2

R

n11/6

ql* /8 R,

1/4

R3

Further, the equilibrium equations of the beam part considered are written.
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°ODQ<waIN

ql

3P qPP O3y -96 -V [0; 4

RUR2 7 []743

48

172 [J [ 0;

R, 3- Ry ¢ IRy, IM [10; 1/ 1/6! !
V4 M-[117414 384 Then, the analogy
EI

OVeuELw OyccMc

is applied. Finally, the vertical displacement and the angle of rotation of
section C are obtained: 17

ql

4 7ql3

we Usgapr H0. C

y 48EIy

In the case of a beam containing the segments of different moments of
inertia, to apply the Mohr’s analogy method, one of the moments of inertia
must be chosen for basic one, first. Then, for each segment, the distributed
load g upon the fictitious beam corresponding to the real beam bending
moment diagram must be multiplied by the ratio between the basic
moment of inertia and the moment

of inertia of the segment considered. Generally, it can be written for the
I

-th segment q;[ 1M, 1° . ; When the distributed load is parabola, its

maximum /in the middle/ can be calculated by the formula: f (19210
Here, I; is the moment of inertia of the segment upon which the distributed
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load g ;
in the shape of parabola acts.

If the beam has tapered section along its length, i.e. the
moment of inertia is a function [ [,

I, /basic/ will be the moment of inertia of the definite section. Then, the
fictitious load will be found

by the equation: 1. OO OO,

The bending moment and the shearing force in the random section of the
fictitious beam are related to the deflection and slope in the same section
of the real beam by formulas: M L1EI,w; VLI El, L.

Problem 7.4.3: A steel beam is supported and loaded, as shown. The
moment of inertia in the segment AB is I; [111620cm*, while the moment
of inertia in the segment BC is I,[15500 cm*. The modulus of elasticity is

E[ 20000kN /cm? . Apply the Mohr’s analogy method to determine the
slope

[lof the beam section A and the deflection w of the beam section B.

The bending moment diagram of the Gerber beam considered is built and
the fictitious beam is drawn under it. The fictitious beam in the segment
AB which has the moment of inertia I;[111620cm* is loaded by a

distributed load corresponding to the bending moment diagram in the same
segment. In

the segment BC the load values are multiplied by the ratio It (111620 ]
2,113, because the formula p, o

qCIM™" takes part.
30 kv 20 kIN/m 50 kNm
AC65,5kNm I, B I,

65 kN 6 m 2,1 55 kN 65,5 59 _ s
+

75,625 /5 655 105,650
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B ca

30 138,402 Fig.7.13: Gerber beam After that, the distributed load acting
upon the fictitious beam in the two segments is resolved into simpler
figures. In this manner, the resultant forces are calculated easier:
105,650 R;

30

2m

R
1

0,7 1,4
R,1,40,7
33

R
4

138,402
R, (1396 CJ90kNm?; f (J92 11 []20622 ) [12.90.6 [(I360kNm?;; , 11 g

1|:]90kNm, R2 l:|3 3
105,650.2,1 [77110,932kNm?; R, (113840221 7145 322kNm?. R, (I,

R 51360 R.[1110,9325 11190
Ay OOABC

A
1%

[]
140

966

2m g 94,644 0,7 R4[1145,322

31,4

62,1

Next step in the solution is the support reactions determination.

O

O

;0

A;H

M = 0; 90.2-360.3-110,932.6,71145,322.7,4[16B [10; 6 [1567,862;
B[194,644kNm?; ,

O

M
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H'0;-90.41360.3-110,932.0,7 145,322.1,4-6Ay L1 0;6A 1845,798 ; A

v[1140,966kNm?
BV
- Check: [ [J 0; 140,966190-3600194,644-110,932[1145,322 [J0;

470,932-01 0. According to the Mohr’s analogy method EI;w Um g - This
means that the bending moment in g

the section B of the fictitious beam has to be found first. The well-known
method of section is used. [] [] 0;
Mp Mp -140,966.6-90.411360.3010; 55 A nNB

M g[1125,796kNm EI,wg[1125,796 kNm?3. 30 2 VB EI, (1 2.10%.11620]
2,324.10% kNcm3; 3 m 3 | 5 5125,796.10°

2,324,108 10,541cm.

140,966 R1H90 R, 11360 M The slope of the section A must be
determined, too. Considering AP the relation EI ©'V, , they ; 4 B conclusion

that the Shearing fOFCEVB VA must be found first, is made.
M

The method of section is applied again: 4 [J [J 0 ; 140,966-V,, [10;

v,[1140,966 kNm?. A

N
A

Then:
L]

1 AL1140,966kNm?.
Finally:
140

O O*<g&"
o)

140

966

N Engineering, Books


https://t.me/EngineeringBooks1

4180° [J0,00607rad [10,00607.5 [10,348°. , A2,324.108

7.5. STATICALLY INDETERMINATE BEAMS SUBJECTED TO
BENDING

In the case of the externally statically indeterminate beams the number of
the statical unknowns (support reactions) is bigger than the number of the
equilibrium equations which can be used. Thus, if the elastic line of the
beam has to be obtained not only the kinematical initial parameters exist
but also the unknown statical. Then, the kinematical as well as the
dynamical boundary conditions must be written for their determination.
The dynamical boundary conditions include the bending moments and the
shearing forces in the definite beam section.

Problem 7.5.1: The beam given has a length [ and stiffness EI and it is
acted upon by a single

force F , as shown. Determine the EI -multiple value of the
deflection’s functions [] [ in the two

segments.

M, F

ABAy,ElX

VBI21/2

X

x Fig.7.14: Statically indeterminate beam subjected to bending The beam
given contains 4 support reactions while the number of the equilibrium
equations is 3. Then, the beam has 4-3 = 1 degree of the statical
indeterminacy.

The force divides the beam into two segments. The distance x is measured
from the left beam end for the both segments.
The kinematical and dynamical boundary conditions are written:

1
)

w

00 DO;DDD OO
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[]

», 110; 3)w, LJ10; 4)M, 0. 4

Further, the universal equation of the elastic line is written for the two
segments:

Elw, 000 EIwgOJEI-xOMA x -02AV3; oo 00 OO

“OTgmgee !t xs» o X W

Elw,000 Elwy0 EI-x Oy 00 00 310 2000 - 0 31

To justify the boundary condition 2) the following differentiation is made:

HiEpEIN

SOoO0=EOx "
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NX < o>

 2) .

To justify the boundary condition 4) the expression for the bending
moment M, must be found

— the differential equation of the elastic line for the second segment is
written:

EIW"2D|:| DDZ ’

and it is obtained:
MO0 Ayx -M, -FO LU,

[1=> 2[00
Then, the kinematical boundary conditions 1) and 2) are justified:

1) EIw; 00 O OEIwg OEI Oy.00MA 02-AV 03 (0; 5 5
00

"RO0"0O

<> o

0
2
2) Yo, , OO, ,
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and it is carried out EIw, , 05901 . ,

Thus, the equation of U pecomes: 2

quDwx <> ' N X >§

[]

Ew200U0 5y 31310 20000
Further, the conditions 3) and 4) are written:

L1

MO TSR VTR

-
[ U
3

3) 5 by 313105 200 UI0;
4),10 Al -M, -FO-' B 0o, _
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[1=> 2010
and the support reactions are calculated A, (11 M, CI3FL . o
Finally, the functions defining the elastic line are obtained:

EIWID L] D-llF X3 DBFI X2; 96 32
10

“OTogTmgex*TmE 0O

EIW3FIX2.296 31 ZDDD 32

If the diagrams of the bending moment [ ] [ ] and the
shearing force [ 1] have to be built, then the differential
equations [ [ 1] -M[] [] and L] [J [ [] will be applied.

7.6. THE INFLUENCE OF THE SHEARING FORCE ON THE
ELASTIC LINE DIFFERENTIAL EQUATION

The elastic line differential equation ET [ ] LI[] -MyL1 []is
valid in the case of pure bending yw" only. If the shearing

force = exists in the beam, then, this equation will change.
To derive the new ,

relation of the beam elastic line the principle of superposition must be
applied.

The deformation of the infinitesimal beam segment of length d x subjected
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to the shearing forces V, only is considered. This is the well-known

loading conditions when the shearing forces’ influence must be found. In
such case the shearing forces V, will cause the displacements of the beam

sections in two parallel planes where the right situated section will move
downward with respect to the left situated section.

Xz (1 VV‘/
V, x
Vzxz

d wy

XZy,
Xz (1 VV‘/

d x*
Fig. 7.15: A beam element subjected to pure shearing

In the case of the beam subjected to pure shearing all of the points of the
right situated section have equal vertical displacements d wy, after the

deformation. These vertical displacements are very small and they are
supposed to be arcs. Their magnitudes are:

d wy L, . (7.54) According to the Hook’s law the relation between
shearing stresses and strains is = [, (7.55),, ,

where G is the shear modulus.

In the other side, the shearing stresses caused by V, can be represented as
v

H7(7.56),, ,

A

where k is the shear coefficient and A is the area of the cross-section.
After equalizing of the right-hand sides of (7.55) and (7.56) it is obtained

for shearing strains:
v

Hz(7.57),,.

GA
Then, the vertical displacement d wy, is expressed by shearing force V, in

the manner
v

dw? . (7.58),00
GA
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Thus, it is determinedw',, (19 "V [JkY# . After differentiation it is obtained
dx GA

n ! k
w'y OV KAV (7.59) 44 Ga dx
Further, using the differential equation
the distributed ,,

load, it is found
q

4Vz _q, where q is the intensity of

wy-".(7.60) GA
If in some problem the influence of the shearing force must be determined
only, then, the

differential equation
w

1

VD ka

Z will be integrated. It will be obtained wy, L1 [1V,dx [1Cy,
where C 1GA GA

is a constant which will be found applying the kinematical boundary
condition.

Then, using the differential relation 9 [V, it is obtained,,

w
v

10
kL0

0.0, (7.61) GAY

Formula (7.61) shows that the elastic line caused by the shearing force V,

only has the same shape like the bending moment diagram.
In the case of a beam subjected to pure bending the differential equation of
the elastic line is:

Myy -,

EI,
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The shearing force is taken into account by the principle of superposition,

namely by adding of the expression -k9 in the right-hand side in the
formula above. ;4

Thus, the elastic line differential equation in the case of the beam
subjected to bending combined with shear is:

q

wll-".

My- (7.62)

EI, GA

Further, the function of the vertical displacements is obtained by
integration. The shear coefficient k taking part in expression (7.62) is
determined in Chapter 11: A

S
2

k YHHdA. (7.63) p ooy OO

It is obvious that only geometrical characteristics of the cross-section are
used, as follow: A -

the cross-sectional area; I, - the moment of inertia about y -
axis; [] [ - the width of the cross-section in the random

level; =" - the statical moment about y-axis of the portion of
the cross-section y,

under or above the level considered. The values of the shear coefficient for
common geometrical shapes are:

- 2for rectangular cross-sections;

- 9 for solid circular cross-sections;

- for high I-profiles cross-section and k [1 2,4 for low I-profiles cross-
section.

Problem 7.6.1: Find the midsection’s deflection of the beam shown in the
fig. 7.4, if the influence of the shearing force is taken into account. The
beam has rectangular cross-section and the Poisson’s coefficient is [1[]
0,25.
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To find the midsection’s deflection the principle of superposition has to be
applied where the influences of the bending moment M), and the shearing

force V, must be taken separately: w

HINpNIERNIN

U l:|V * My
- : o : 5q1 400 1 O
Using the function (7.22) it is determined wyy, 0 » o L™ - 384 EI

y
To take into account the influence of the shearing force the expression

(7.61) is used where the

integration constant C1[ 10 is obtained by the kinematical
boundary condition [1[1[10. Then, it is

determined:

w
v

[

kql?
8GA:
After that:

w
11 Og 5ql* kql?
C->

2

10

384

EI

[]

y 8GA: The expression above can be represented in the manner: []
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4O0O%K2EH, kppero 2 (OPM12 [Jh2wJ-20000 384E1, 5 5 I2

GEU Y Abh12- BBy
[]

Further, applying the relation © UEjtisfound E OO O
0 25. 006

Finally:
1O

OO0~ O

l

~0 Ul

vOOooOoOoiH24 0o0odn O=200 384EI, [11 12

= =->h00 O

It is obvious, if the ratio ! is equal to 10, then the influence of the shearing
force on the |,

vertical displacement will be equal to 2,4%.

7.7. DETERMINATION OF THE ELASTIC LINE EQUATION IN
THE CASE OF A BEAM SUBJECTED TO DOUBLE BENDING
The elastic line determination in the case of a beam subjected to double
bending is more complicated than this one in the case of special bending.
Here, the Bernoulli’s hypothesis says that each beam section has rotated
about the neutral axis and the random longitudinal beam fibre belongs to
the plane normal to the neutral axis after deformation.

In the case of a beam subjected to double bending the bending moments
about the principal axis y and z are different than zero. The normal stresses
caused by these moments are

M, M
= [ ’ (7'64)x Iy Iz

and the equation of the neutral axis n is
M, I
z
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[

Y (7.65)
M, 1,

It is seen from (7.65) that the neutral axis in the case of a beam subjected
to double bending does not coincide to the principal axis y and it changes
its position with respect to the principal beam axis y and z for every beam
section. Then, the random longitudinal beam fibre will deform in different
way for different beam section. It is following from this that the beam axis
after deformation

will be the spatial curve and for its determination the
deflections’ functions [ 1] and [] [] must be found
separately applying the principle of superposition. Here, []
[ is the function of the deflections

along the principal axis y .
First, the forces acting in the plane xz are considered — they cause the
bending moment M, .

Then, to determine the deflection’s function [ ] [] the
familiar differential equation (7.6) has to be

integrated.
After that, the loads acting in the plane xy are investigated. They cause the
bending moment

M, and give the deflections [ 1[ ] along the y -axis — the
differential equation of [ [ ] can be derived.

For that purpose, the elastic line’s curvature due to the bending moment
M, only is considered. To obtain the correct sign in the equation’s right-

hand side the two sketches of the beam axis deformation are drawn, as
follow:

yy
MZ>0MZ>OMZ<OMZ<O
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X X
v’(x) > 0 v’(x) < 0 Fig.7.16: The beam elements subjected to M, after

deformation

It is obvious that "and M, have the same sign. Then, the
differential equation of [ ][] has the form:

M

v 1" . (7.66) EI,
Next step is the integration of this differential equation.

Finally, the method of superposition must be applied. If the displacement
d,, of the beam

section M at a distance xp; from the beam left end must be
determined, then the deflections [ [y,

and
%

10

. have to be found applying expressions (7.6) and (7.66), respectively.
Using the fact, that ,,

they are perpendicular to each other, it will be obtained d
00 00 2 x 042

ViXM-MM
CHAPTER 8
MOMENTS OF INERTIA

8.1. DEFINITION

8.1.1. MOMENTS OF INERTIA ABOUT AXES

A plane figure representing cross-section of a beam is considered. The
figure contains an infinite number of elements of area dA, as shown in
fig.8.1. Then, the total area of the cross-section will be

A0 DO, @8.1) _ _
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o
Area is the simplest geometrical characteristic of the cross-section and it

has dimension length?. The area is always positive and does not depend on
the coordinate system chosen.

ZA

Fig. 8.1: Cross-section of a beam

The moments of inertia about axes y and z , respectively, are defined by
integrals I, [] 72dA;

o

(8.2)

I, 0 OOyA

o
8.1.2. POLAR MOMENT OF INERTIA

Polar moment of inertia or moment of inertia about a point (pole) is
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I, 0%d, (8.3)

o

where [is the distance from the area dA to the pole — point O.

If the pole about which the polar moment of inertia must be calculated is
the origin of the coordinate system, then,

ZDy%]g
i, and

Io O O00O20d A O OOy2dA O z2dA. (8.4)

oo oo

Therefore
Io 01,01 85),
i.e., the sum of the moments of inertia about two axes perpendicular to

each other and passing through a given point is equal to the polar moment
of inertia about the same point.

8.1.3. PRODUCT OF INERTIA
Product of inertia of the figure about axes y and z is

I, 0 00 . (8:6)
o

If the cross-section has axis of symmetry, then the product of inertia
about that axis will be equal to zero.
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Fig. 8.2: Cross-section possessing the axis of symmetry

It can be seen in fig. 8.2 when the figure has the axis of symmetry it
always can be separated into two parts having similar coordinates. Besides,
the difference between the coordinates is in the sign only: z; ] z, z and

y1U y ¥, -y. Then, calculating the product of inertia it is obtained:

1,01 U0yzdA U UUyzd AU LU DlzdA L0. (8.7)

aobaAabAad
O=>2000=>200

The moments of inertia have dimension length?.

The moments of inertia about axes and the polar moment of inertia are

always positive while the product of inertia can be positive, negative or

even zero.

8.2. MOMENTS OE_INERTIA OF. THE RECTANGLE
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Fig. 8.3: Rectangle

Here, the infinitesimal area is

d 1. (8.8) Then, joining the first of expressions (8.2) and expression (8.8)
and performing the following

transformations it is carried out:
bh

22bpO5gh® 3 O bh3

I, 000z%dA O O0Oz%dydz O Ody Oz2dz OO0 Oy O
O

e 3
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8
8

0o 125 (8.9)

00 O0bh 0220

22

Further, repeating the same action about the second expression of (8.2) and
expression (8.8) it is obtained:

hb?

I,1.(8.10)

12

The rectangle has two axes of symmetry and because of that:
I, . (8.11) Finally, the expressions (8.9) and (8.10) are substituted in (8.5)

and it is found:

I Obh3hb3bh M OA p Oh . (8.12)1 01 D1 12

8.3. THE PARALLEL AXES THEOREM (STEINER’S THEOREM)
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Fig. 8.4: Cross-section of a beam with two coordinate systems parallel to
each other

Let y and z to be the central axes about which the moments of inertia I,,I,
and the product of inertia I, to be known. Let the axes y' and z to be

parallel to the axes y and z , respectively.
The task is the moments of inertia I, , I. and the product of inertia Iy-z- to

y
be found.

Solution:
Let d A to be an infinitesimal area in the vicinity of point M of coordinates
y and z . Then, applying the first formula of (8.2) it is obtained:

21
1,0 7. (8.13)
HIN
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Further, investigating fig. 8.4 it is evident

zU1-". (8.14)

The expression (8.14) is substituted in (8.13) and the transformations are
made, as follow:

1,0 0000¢2d A0 O022d AD22¢' 0 02dA Ozc'? dA.
(8.15)

goooodggg
After that, using (8.2) it can be seen that the first integral in the right-hand
side is the moment of inertia I, while applying (8.1) it can be determined

that the third integral is the figure’s area A. The coordinate of the figure’s
center of gravity is found by the well-known formula of Theoretical
mechanics:

[(10zd A

zc P9 [ (8.16)
A
where S, [] zd A is the statical moment about axis y .

]
But 0

,and[1[]zd A 0. ¢

0

Then, the expression (8.15) will be
I

y

[

I
y

2
c (8.17) Similarly, the following relations are derived
I

zZ
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[
I

VA
;
C (818) IyZ' D IyZ -CZc (819)

8.4. RELATIONS BETWEEN THE MOMENTS OF INERTIA
ABOUT AXES ROTATED TO EACH OTHER

Fig. 8.5: Cross-section of a beam with two coordinate systems rotated to
each other at an angle []

Lety and z to be the central axes about which the moments of inertia 1,1,
and the product of inertial,, to be known. Let the axes y" and z to be rotated

at an angle [lwith respect to the axes y and z. Now, the aim is the
moments of inertia I,,,I,» and the product of inertia I, to be obtained.
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Solution:

The relations between the coordinates of a point M with respect to two
coordinate systems are: y'[1 ycos [1[] zsin [, z'[] -ysin [J[Jzcos 1.
(8.20) First, the moment of inertia I, will be represented in form (8.13).

Then, the second expression of (8.20) will be substituted in (8.13):

1,00 00 000%dA Osin? OO0 Oy?d A-2sin Ccos
O000yzdA Oceos? O O O22dA. (8.21)

oo odg 4o

Further, the trigonometric relations are used:
sin? [J 31052 cos? [J[O1He0s2 H sin2 [0 2sin Oeos 0. (8.22) 5. 5.

Formulas (8.2) and (8.6) are replaced in (8.21) and it is obtained:
Iy-D 1-cos2[] -sin2 Dyz ] 10cos2[] _ (823) 21221y

The final form of expression for moment of inertia I, is

OO000 11, cos201-Iy,sin20]. (8.24) (o 5

The moment of inertia I, and the product of inertia I, are obtained in
similar way:

rooool I,-1,, cos2L 111 I, sin2[ 1. (8.25) , L »
Iy, 0 -100sin2 O 01,,sin200 (8.26);

As a conclusion, it can be said that the sum of the moments of inertia about
two axes perpendicular to each other remains constant:
L0 L0 L, U LU I, (8.27)

8.5. PRINCIPAL MOMENTS AND PRINCIPAL AXES OF
INERTIA

The moments of inertia about principal axes have extreme values relative
to the all moments of inertia. Besides, the product of inertia about the same
axes is equal to zero.

The moments of inertia about the principal axes are called principal
moments of inertia. They can be determined by the formula:

Engineering, Books


https://t.me/EngineeringBooks1

IyHIz [ Hbylz DZD Iyz . (8-28)1,2D Imax,minDZ Od200d 2I

- [

Angles ;[ 1and ,[] which the principal axes of inertia make with the
horizontal axis y can be found by expression:

21

tg O )7 (8.29) L1,

where the relation™ ] (I~ Hexists., ; 5

CHAPTER 9
TORSION

9.1. DEFINITION

Torsion is a type of deformation in which the transverse sections of a
beam twist relative to each other under the action of external torsion
moments only. The external forces situated normally to the beam axis
cause the torsion moments because they do not intersect the axis. The
torsion moments’ planes of action are perpendicular to the
longitudinal beam axis.

The pure torsion conditions in the curved beams might be caused by
different loading configuration than mentioned above. As an example, in
the thin-walled beams the torsion can arise if the point of application of the
transverse force does not coincide with the cross-section’s shear center
(center of twist); in this case, the torsion is combined with bending.
However, if the bending moment is very smaller with respect to the torsion
one, then the case of a pure torsion has to be investigated.

In practice, the shafts, the coil springs and other machines are predicted to
work in pure torsion conditions.
TA 7, T, Ti
T1 2" T, T, T, T,
AM
Fig. 9.1: Beam working in pure torsion condition

Pure torsion obeys the condition at any beam section only the torsion
moment Tto be different than zero, i.e.
rao, Uy, Uv, LM, LM, LI0. (9.1)

9.2. THE TORSION MOI\_/[ENT D!AGRAM
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The beam shown in fig.9.1 is considered and the method of section is
applied. The beam part loaded by a small number of external moments is
chosen for investigation and the positive sense of the torsion moment is
introduced, as follow: if the torsion moment rotates in the
counterclockwise direction when we look at the section cut, then its sense
is positive and vice versa.

TA Tn TA Tn
A
X X

Fig. 9.2: The torsion moment in beam section n-n The moment equilibrium
equation about the longitudinal beam axis for the beam part chosen must
be written. In this way, it can be concluded that the torsion moment is
equal as a magnitude and opposite as a sense to the external moments
acting upon the beam part considered.

* Build the torsion moment diagrams of the beams shown in Problems 9.1
and 9.2. Problem 9.1

10 kNm 30 kNm T-=20 kNm

A B 4Cx

2m3m

10 104,

20 20

Fig. 9.3: A beam working in pure torsion conditions

Because of the loading, only the moment M situated in the fixed support,
as shown, is the unknown support reaction and it will be determined by the
condition:

1M, 1JO; T 1130 10 L1 0; T- LI 20kNm.

The beam contains two segments. They will be considered separately and
the functions of the torsion moments will be obtained, as follow:

I segment: 0 [] x 2m

10 kNm

x T,

M, 1J0;T;-10 1J0; T; L110kNm.

ITsegment: 0 [] x 3m
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7 M-=20 kNm

3-X

M, 1JO; -20-T,UJ 0;T,01 -20kNm.

- Torsion moment diagram

Note: The positive values of the torsion moment diagram have to be drawn
above the zero line!

Problem 9.2

To=14 kNm 12 KNm/m” 10 kNm

ax By CX

2m2m14

+T1.167 m™ -

10
10 20

"Gl U(x)

ty
8,167
Fig. 9.4: A beam working in pure torsion conditions

The uniformly distributed torsion moment of intensity 12kN m/m' is
applied in the segment AB. It will be substituted for a resultant torsion
moment of magnitude equal to the product between the distributed
moment intensity and the length of the segment.

After that, to find the moment support reaction, the relevant equilibrium

equation will be written:
LM, 1J0; -T,[112.2-10 U 0;T4,[L114kNm.

Next step in the solution is the torsion moment functions determination:
I segment: 0 [ 1 x 2m

14 kNm 12 kNm/m’

x T,

[]
1O
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M, [00;T;012x-14 [ 0; T;[0-12x [(114; T; J14kNm; T ]
[][0-12.20014 [J -10kNm

I1Tsegment: 0 L1 x2m

72 10 kNm

2-X

M, 1JO; -18-T,1J0; T,[1-10kNm.

- Torsion moment diagram

9.3. BEAMS OF SOLID CIRCULAR AND HOLLOW CIRCULAR
CROSS-SECTIONS

The type of the cross-section influences too much on the stresses and
strains in beams subjected to a pure torsion.

9.3.1. STRESSES

The experiment with the rectilinear beams of solid circular cross-sections
has been made, as follow: The web of lines is drawn on the beam surface.
Some of the lines are rectilinear and parallel to the longitudinal axis while
the others are circles lying in the planes which are normal to the beam
axis. Thus, the rectangles on the cylindrical surface are obtained. Every
cross-section has definite points onto the circle through which the radial
lines are built.

Then, the beam is loaded so that the pure torsion conditions to be
performed and it is concluded after deformation:

- All of the lines parallel to the beam axis have rotated at the same angle y
with respect to their initial positions. Besides, the rectangles onto the
cylindrical surface have become parallelograms;

¢
y Fig. 9.5: Deformation of a beam working in pure torsion conditions

- The beam cross-sections remains plane, circular, and at the same
distances relative to each other as in the beginning;

- Any beam section has been rotated at an angle ¢, named angle of twist
relative to its initial position, i.e. the section rotates with respect to the
beam axis as the rigid plate do;

- The radial lines remains rectilinear and the lengths of the radii do not
change.

On the basis of the experiment, it can be concluded that the Bernoulli’s
hypothesis takes place, namely the plane sections before deformation
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remain plane after deformation. Besides, since the torsion moments only
act in the cross-sectional planes, the shearing stresses arise there, while
the normal stresses are equal to zero. Furthermore, according to the
theorem of the shearing stresses equivalence it is proved that the
shearing stresses in the longitudinal beam sections are equal to these
ones in the cross-section.

T
dA

dP 1 dA CP

Fig. 9.6:
Cross-section of a beam working in pure torsion condition Then, to
determine the stresses, the beam working

in pure torsion conditions will be examined, as follow: The beam section
at distance x from the left end is given in Fig. 9.6. The torsion moment in
the section is labelled by T and it is the internal force different than zero
only. T must be represented as a sum of the moments about the cross-
section’s center of gravity C of the forces perpendicular to the radii
passing through their points of application. The forces like these are
directly related to the shearing stresses.

Thus, the stress conditions in a beam working in pure torsion are similar to
these ones in a beam working 69 in pure shear, i.e. in the both cases the
shearing stresses only exist.

Further, infinitesimal force ,[ 1dA acting upon infinitesimal plane dA will

be considered

(Fig.9.6). The moment of the force about the beam axis is™

UM, Then, the torsion moment in the X

cross-section T is:

T O OO OYdA. (9.2)

0t

The integration will be made when the law of shearing stresses distribution
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in the crosssectional plane is obtained, as follow:

Two cuts through the beam separate a portion of length dx and thickness
[1. The left section of the portion has to be supposed fixed. Then, under
the action of the torsion moments the right section will rotate relative to
the left one at an angle [, while every generant will rotate at an angle
[Iwith respect to its initial position. Angle[lis the angle of relative
torsion. The positions of infinitesimal beam portion, generant DBand
radius CB before and after deformation are given in Fig. 9.7.

1 dp y dop pB

CdA

dx

Fig. 9.7: Infinitesimal portion of a beam working in pure torsion The
length of the arc BB, can be represented in two manners:

BB; 0 O000d OO Od O (9.3)

BB, [, dx. (9.4) The shear strain is determined by comparing of the two

right-hand sides:
d
HH 95,00
dx

According to the Hook’s law:

HOGH. 9.6)

The shearing strain ,[] from (9.5) is substituted in (9.6) and the shearing
stresses are:

d
HH 97,060

dx
Further, expression of ,[1 is put in (9.2):

d U

T 045 0020dA. 9.8) OO0 OG O dA OG

l:”:‘dXdX 0
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I, O OO2[0dA is the cross-sectional polar moment of
inertia.

OO

Then, (9.8) becomes:
d

T

[1.(9.9)

dx GI,

Finally, taking 9=from (9.9) and putting it in (9.7), for L is obtained: g4,
T
U 0.0 (9.10), 4,

It is obvious the shearing stresses function is linear with respect to the
distance from the cross-section’s center of gravity to the random cross-
section’s point.

The shearing stresses in a beam working in pure torsion are directly
proportional to the distance from the cross-section’s center of gravity to
the point considered. When L1 0, from (9.10) follows ,[ 1L 10. The

shearing stresses have the biggest values when [ 11 R :

T

M pax - 911 1,

The shearing stresses distribution of the solid circular and the hollow
circular cross-sections are shown in Fig. 9.8.

TT
Tmax
CCR'R

Fig. 9.8: Shearing stresses distribution

The ratio between the cross-section’s polar moment of inertia and the
radius, labeled by W, , is named section modulus of a beam working in

pure torsion conditions:

w01 (9.12),

Then, the maximum shearing stresses in the cross-section are:
T

[ ax - (9:13) W,

max

It can be said as a conclusion, the experiments show that all of the
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expressions derived for solid circular members working in pure torsion can
be applied in the case of the hollow circular crosssections.

9.3.2. DETERMINATION OF THE POLAR MOMENT OF
INERTIA I, AND SECTION MODULUS W,

The solid circular cross-section of radius R is considered where the part of
thickness pd is

detached from the beam (Fig.9.6). This part must be divided into the
infinitesimal segments of areasdA. All of them are situated at a distance
[Ifrom the cross-section’s center of gravityC. Thus the polar moment of
inertia of the part detached is:

I
t

[

10

[

2dA (J210dA O 12

A (9.14)
aA

The area of the part considered can be determined by the expression:
A [ . (9.15) Then, after substitution of (9.15) in (9.14), it is obtained
I, 0 .3 [ (9.16) Further, to determine the polar moment of inertia of the

entire figure, the integration will be

made, as follow:
RR 4

I

t

[

wD D
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od 002000 Oy. (9.17)

00
The expression of the polar moment of inertia with respect to the diameter
D of the solid circular cross-section is:

OD*

I, [1.(9.18)

2

The section modulus will be carried-out from (9.12):
OR3 OD?

W, . (9.19)

216

If the circular cross-section is hollow of external radius R and internal
radius r, then the polar moment of inertial, and the section modulusW, will

be obtained by the expressions:
R

I
[]

ROUO0. 9200, 0 0034 OO 2004 /4), 5,

It is obtained after substitution LI1[1":

I
t

[]
[]

4DDDB
. OO0 . (9.21)y O

2

9.3.3. DESIGN OF THE CIRCULAR BEAMS

The main restriction is the biggest shearing stresses in the beam working
in pure torsion conditions to be smaller than allowable ones:

Tmax
|jrnax [ [] |jallow > Wt

Tmax.t W ] I
allow

The diameter of the beam will be carried-out applying the condition
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mentioned above:
- solid circular cross-section

D 03 16Tmax ; 0]

allow
- hollow circular cross-section

D [13 16Tmax . - D4)D I
allow
9.4. BEAMS OF SOLID NON-CIRCULAR CROSS-SECTION

The determination of the stresses in a beam of solid non-circular cross-
section working in pure torsion conditions is a very complicated problem
and it can not be solved by the Strength of materials methods. The reason
is the different type of deformation leading to the Bernoulli’s hypothesis
invalidity. The beam sections warp and thus the shearing stresses
distribution change essentially. Then, to determine the shearing strains the
mutual twist as well as the warping of the beam sections has to be taken
into account. The strict solution of the problem is done by the Theory of
elasticity.

Some special features of the shearing stresses distribution in the non-
circular cross-sections can be noted: If the cross-section of the beam has
external corners, then, the shearing stresses in these corners are equal to
zero; If the beam surface is free of load, then, the shearing stresses in the
sections situated normally to the beam’s contour are also equal to zero.

The Theory of elasticity methods gives the equations about the shearing
stresses distribution in common cross-sections. In the case of more
complex cross-section the shearing stresses distribution might be obtained

by the analogy method of Prandtl’.

The beam of rectangular cross-section working in pure torsion is well-
known problem in engineering practice. Theory of elasticity shows that the
maximum shearing stresses are situated in the middle of the bigger side of
the rectangle. The shearing stresses distribution in the beam of rectangular
cross-section is shown in fig. 9.9.

T

B

Ah

b

Fig. 9.9: Shearing stresses distribution
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First, the ratio n[J" must be calculated. Then, according to this ratio, the
coefficients L1k,

have to be determined using Table 9.1.
h

"11,21,41,61,822,25253,

«a 0,208 0,263 0,316 0,374 0,432 0,492 0,567 0,645 0,801
0,140 0,191 0,255 0,331 0,396 0,458 0,531 0,612 0,780
k 1,000 0,944 0,887 0,843 0,811 0,795 0,785 0,775 0,753

Table 9.1: Coefficients

[]

[]

k

depending on the ratio n [

hb

It was established, the values of coefficients a and 3 tend to 1/3 when the

ratio n(1" is very, small.

1 Ludwig Prandtl (1875-1953) is a German physician, professor in Hannover and Goettingen.

The polar moment of inertia and the polar section modulus will be found
applying the formulas: I, (0 Cb% W, (0 (3. (9.27) The shearing stresses

in the typical cross-sectional points A and B are obtained by equations:

00, 0% 0K, (9.28) awpa
t

9.5. STATE OF STRAIN

The expression (9.9) is written in a form:
T

d [J.(9.29) GI,
Then, it is obtained after integration:

000 00T dx Ocy. (9:30) ¢y

To determine the constant;C the boundary condition must be used. If the

beam has one segment, then the twist in the fixed support is equal to zero.
However, if the beam has many segments, then the torsion moment
function will be different for each one of them. Consequently, according to
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(9.30), the function of
0

o X will be different for every segment, too. As an example, if the beam
has two segments, then (9.30) will take the form:

Unoo ooTdax Ocy; 931)1 g
UT2gx OCy. 9.32), D00 0g10

The integration constants C; and C, will be found using the boundary

conditions:
- the twist in the fixed support is equal to zero;
- the twists in the boundary section are equal to each other.

Problem 9.5. Suppose that the beam in problem 9.2 has two segments of
different polar moments of inertia and their ratio is I; I ~'1,2. Build the

GI,;Ux)- diagram.,

The expressions T ;= -12x+14and T ,=-10 of the torsion moments

functions in the two segments, are substituted in (9.31) and (9.32),
respectively. It is obtained:
GI

[

1 10000@12x O14)dx C0Cy O-6x% O14x OCy;
GIE 11 (110)dx CICy (J1,2(-10x) Cy . 1 0001

£2
The twist in the fixed support is equal to zero, i.e.

NNy

o1 LJ0. It is carried-out: 4 ¢

GJ4; 0,000 -6.02 J14.0 JC; O 0, C;O 0. The twists in
the boundary section are equal to each other,
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L.e.
10O

GI

U 061, 0 O. Then: -6.22 [J14.2 [1C; [1-12.00]C; and
Cz[] 4kNm . t11

The expressions of GI; - functions of twists are:

GI
[]

1 100 O-6x? O14x ; GI 0,0 [O0-12x (4. The graphs

are given in fig. 9.4. In accordance with relation (9.9) the
function of twist [ ] [ 1has

extremum in the beam section where the torsion moment function is equal
to zero. Because of that, to draw the

10

71 -diagram the values of x , namely x [10 ; x [J 2 and x [11,167 have

been used. The angle of relative twist (1]~ of dimension rad / m is
defined. 0 is a measure of ;,

shearing strains when the pure torsion conditions exist. GI.. is the stiffness

of a beam working in pure torsion conditions. It is obvious the bigger
stiffness the lower strain.

When the shafts working in pure torsion conditions have been designed,
the restriction about the strength as well as the stiffness must be satisfied.
If the angle of relative twist [lis big, then, it obstructs the work of the
shafts. To prevent this phenomenon the restrictions about the relative
twists are given. After that, the check of the real relative twist must be
made with respect to the boundary value of the angle. Finally, if the check
is not obtained, the dimensions of the shaft must be increased.
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9.6. STATICALLY INDETERMINATE BEAMS WORKING IN
PURE TORSION CONDITION

All of the beams considered earlier were statically determinate. They are
fixed at one end and only the torsion moment is unknown reaction. It was
determined by the condition that the sum of the moments about the beam
axis to be equal to zero. Then, the method of section has been applied, the
torsion moments functions for every segment have been written and the
torsion moment diagram has been drawn.

In the case of statically indeterminate beam, i.e. the beam fixed in both
ends, the solution is different. Such beam is shown in fig.9.10.

TA' T,
BCxAab
Fig. 9.10: Statically indeterminate beam working in pure torsion condition

The beam contains two unknown torsion moments as reactions while the
equilibrium equation is only one. If the number of the equilibrium
equations is subtracted from the number of the unknowns, then, the degree
of the statical indeterminateness will be obtained. In our case: two
unknown torsion moments — one equilibrium equation = one time statically
indeterminate problem. The problem is statically indeterminate externally.

To solve the problem the condition taking into account the type of the
beam deformation must be introduced, namely the mutual twist of the
beam sections A and C must equal to zero. It can be written in the manner:

- If the segments of the beam have the same polar moment of inertia,I:

ab

1T, d x LU T,dx [ 0. (9.33)

00

- If the segment AB has the polar moment of inertial, ;, while the segment

BChas I;5:alb

b1 Todx (1 0. (9.34) Ty dx Oy

0620

Problem 9.6. Build the torsion moment diagram of the beam shown. The
left segment has solid circular cross-section of diameter 0,10m, while the
right segment has hollow circular crosssection of external radius 0,05m

and the ratio between internal and external radius is LI1[1" [10,8 . 5
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TyA20 kNm/m T; B, C,
3m2

. 28,57 1.

11,43 11,43

Fig. 9.10: Statically indeterminate beam

First, the moment equilibrium equation about the beam axis is written:
[IM, [J0; T, LT -20.4 LI0.

According to (9.17) the polar moment of inertia is calculated:

I

t
1

[]
[10,05% , [10,4909.10°m* . Further, in accordance with (9.21) the polar
moment of inertia of the second segment is determined:

Ip 010054 (1170,9817.105m4. ,

Then, the torsion moments functions of the two segments are obtained
applying the method of section:
T, -Ty; T, O -T, C120x.

b
After that, the condition (9.34) is used:

altl (-T, O 20x)dx 1 0. The value of the [1(-T,)d x (J
It2
01629

unknown torsion moments is obtained after integration: T, [111,43kNm.

The torsion moments expressions of the two segments are:
T, -11,43; T, [ 20x -11,43.
Finally, the torsion moment diagram is built.
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